T. Lim, J. Ritchie, J. Corney, R. Dewar, K. Schmidt, K. Bergsteiner
{"title":"基于物理交互的触觉虚拟装配系统评估","authors":"T. Lim, J. Ritchie, J. Corney, R. Dewar, K. Schmidt, K. Bergsteiner","doi":"10.1109/ISAM.2007.4288464","DOIUrl":null,"url":null,"abstract":"Assembly is one of the most extensively studied manual processes in manufacturing. Using design for assembly (DFA) methodologies relative times of real-world assembly tasks such as manipulation and insertion can be quantified. However, it is unclear if similar values can be reflected in a virtual assembly system? This question forms the rationale for the peg-in-hole assembly task addressed in this study. Although almost simplistic in nature, assembling a peg into a hole addresses three fundamental states in an assembly process -picking, placing and motion within an environment. The objective here is to investigate assembly performance in the virtual environment using a force feedback haptic device benchmarked against previously quantified data. Inclusive, is a kinematic evaluation of task performance for peg-in-hole manipulation based on geometric and force conditions.","PeriodicalId":166385,"journal":{"name":"2007 IEEE International Symposium on Assembly and Manufacturing","volume":"532 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Assessment of a Haptic Virtual Assembly System that uses Physics-based Interactions\",\"authors\":\"T. Lim, J. Ritchie, J. Corney, R. Dewar, K. Schmidt, K. Bergsteiner\",\"doi\":\"10.1109/ISAM.2007.4288464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assembly is one of the most extensively studied manual processes in manufacturing. Using design for assembly (DFA) methodologies relative times of real-world assembly tasks such as manipulation and insertion can be quantified. However, it is unclear if similar values can be reflected in a virtual assembly system? This question forms the rationale for the peg-in-hole assembly task addressed in this study. Although almost simplistic in nature, assembling a peg into a hole addresses three fundamental states in an assembly process -picking, placing and motion within an environment. The objective here is to investigate assembly performance in the virtual environment using a force feedback haptic device benchmarked against previously quantified data. Inclusive, is a kinematic evaluation of task performance for peg-in-hole manipulation based on geometric and force conditions.\",\"PeriodicalId\":166385,\"journal\":{\"name\":\"2007 IEEE International Symposium on Assembly and Manufacturing\",\"volume\":\"532 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Assembly and Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAM.2007.4288464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Assembly and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2007.4288464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of a Haptic Virtual Assembly System that uses Physics-based Interactions
Assembly is one of the most extensively studied manual processes in manufacturing. Using design for assembly (DFA) methodologies relative times of real-world assembly tasks such as manipulation and insertion can be quantified. However, it is unclear if similar values can be reflected in a virtual assembly system? This question forms the rationale for the peg-in-hole assembly task addressed in this study. Although almost simplistic in nature, assembling a peg into a hole addresses three fundamental states in an assembly process -picking, placing and motion within an environment. The objective here is to investigate assembly performance in the virtual environment using a force feedback haptic device benchmarked against previously quantified data. Inclusive, is a kinematic evaluation of task performance for peg-in-hole manipulation based on geometric and force conditions.