PMU最优配置下的电力系统状态估计精度与可观测性评估

Abdullah A. Almehizia, F. Alismail
{"title":"PMU最优配置下的电力系统状态估计精度与可观测性评估","authors":"Abdullah A. Almehizia, F. Alismail","doi":"10.1109/TPEC.2017.7868263","DOIUrl":null,"url":null,"abstract":"This paper introduces a phasor measurement units (PMUs) placement technique where redundant measurements can be removed and only critical measurements that will guarantee system observability are kept. The criterion for the measurement reduction algorithm is the minimum condition number of the measurement matrix. In this paper, the solution of the state estimation problem is achieved by two methods, the weighted least square (WLS) state estimation and the least absolute value (LAV) state estimation. In the WLS methodology, the Singular Value Decomposition (SVD) technique is used. The WLS would fail in the presence of bad data measurements, and a post WLS process will be required to identify and eliminate the effect of bad data. The LAV estimator, on the other hand, has the advantage of automatic bad data rejection if the measurements do not contain any leverage measurements. The simulations were done using the IEEE 9 and 14 bus system.","PeriodicalId":391980,"journal":{"name":"2017 IEEE Texas Power and Energy Conference (TPEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power system state estimation accuracy and observability evaluation with optimal PMU placement\",\"authors\":\"Abdullah A. Almehizia, F. Alismail\",\"doi\":\"10.1109/TPEC.2017.7868263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a phasor measurement units (PMUs) placement technique where redundant measurements can be removed and only critical measurements that will guarantee system observability are kept. The criterion for the measurement reduction algorithm is the minimum condition number of the measurement matrix. In this paper, the solution of the state estimation problem is achieved by two methods, the weighted least square (WLS) state estimation and the least absolute value (LAV) state estimation. In the WLS methodology, the Singular Value Decomposition (SVD) technique is used. The WLS would fail in the presence of bad data measurements, and a post WLS process will be required to identify and eliminate the effect of bad data. The LAV estimator, on the other hand, has the advantage of automatic bad data rejection if the measurements do not contain any leverage measurements. The simulations were done using the IEEE 9 and 14 bus system.\",\"PeriodicalId\":391980,\"journal\":{\"name\":\"2017 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC.2017.7868263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC.2017.7868263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种相量测量单元(pmu)放置技术,该技术可以去除冗余的测量值,只保留保证系统可观测性的关键测量值。测量约简算法的准则是测量矩阵的最小条件数。本文通过加权最小二乘(WLS)状态估计和最小绝对值(LAV)状态估计两种方法来解决状态估计问题。在WLS方法中,使用了奇异值分解(SVD)技术。WLS将在存在错误数据测量时失效,并且需要一个WLS后流程来识别和消除错误数据的影响。另一方面,如果测量不包含任何杠杆测量,LAV估计器具有自动排除不良数据的优点。仿真采用ieee9和ieee14总线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power system state estimation accuracy and observability evaluation with optimal PMU placement
This paper introduces a phasor measurement units (PMUs) placement technique where redundant measurements can be removed and only critical measurements that will guarantee system observability are kept. The criterion for the measurement reduction algorithm is the minimum condition number of the measurement matrix. In this paper, the solution of the state estimation problem is achieved by two methods, the weighted least square (WLS) state estimation and the least absolute value (LAV) state estimation. In the WLS methodology, the Singular Value Decomposition (SVD) technique is used. The WLS would fail in the presence of bad data measurements, and a post WLS process will be required to identify and eliminate the effect of bad data. The LAV estimator, on the other hand, has the advantage of automatic bad data rejection if the measurements do not contain any leverage measurements. The simulations were done using the IEEE 9 and 14 bus system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信