确定0(nm)内的边缘连通性

D. Matula
{"title":"确定0(nm)内的边缘连通性","authors":"D. Matula","doi":"10.1109/SFCS.1987.19","DOIUrl":null,"url":null,"abstract":"We describe an algorithm that determines the edge connectivity of an n-vertex m-edge graph G in O(nm) time. A refinement shows that the question as to whether a graph is k-edge connected can be determined in O(kn2). For dense graphs characterized by m = Ω(n2), the latter result implies that determination of whether a graph is k-edge connected for any fixed k can be accomplished in time linear in input size.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Determining edge connectivity in 0(nm)\",\"authors\":\"D. Matula\",\"doi\":\"10.1109/SFCS.1987.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an algorithm that determines the edge connectivity of an n-vertex m-edge graph G in O(nm) time. A refinement shows that the question as to whether a graph is k-edge connected can be determined in O(kn2). For dense graphs characterized by m = Ω(n2), the latter result implies that determination of whether a graph is k-edge connected for any fixed k can be accomplished in time linear in input size.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

我们描述了一种在O(nm)时间内确定n顶点m边图G的边连通性的算法。一个改进表明,图是否为k边连通的问题可以在O(kn2)内确定。对于以m = Ω(n2)为特征的密集图,后一个结果表明,对于任意固定k,图是否k边连通,可以在输入大小的时间线性上完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determining edge connectivity in 0(nm)
We describe an algorithm that determines the edge connectivity of an n-vertex m-edge graph G in O(nm) time. A refinement shows that the question as to whether a graph is k-edge connected can be determined in O(kn2). For dense graphs characterized by m = Ω(n2), the latter result implies that determination of whether a graph is k-edge connected for any fixed k can be accomplished in time linear in input size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信