个体化hrtf结构建模的混合方法

Riccardo Miccini, Simone Spagnol
{"title":"个体化hrtf结构建模的混合方法","authors":"Riccardo Miccini, Simone Spagnol","doi":"10.1109/VRW52623.2021.00022","DOIUrl":null,"url":null,"abstract":"We present a hybrid approach to individualized head-related transfer function (HRTF) modeling which requires only 3 anthropometric measurements and an image of the pinna. A prediction algorithm based on variational autoencoders synthesizes a pinna-related response from the image, which is used to filter a measured head-andtorso response. The interaural time difference is then manipulated to match that of the HUTUBS dataset subject minimizing the predicted localization error. The results are evaluated using spectral distortion and an auditory localization model. While the latter is inconclusive regarding the efficacy of the structural model, the former metric shows promising results with encoding HRTFs. Index Terms: Hardware—Digital signal processing; Computing methodologies—Neural networks; Applied computing—Sound and music computing","PeriodicalId":256204,"journal":{"name":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A hybrid approach to structural modeling of individualized HRTFs\",\"authors\":\"Riccardo Miccini, Simone Spagnol\",\"doi\":\"10.1109/VRW52623.2021.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hybrid approach to individualized head-related transfer function (HRTF) modeling which requires only 3 anthropometric measurements and an image of the pinna. A prediction algorithm based on variational autoencoders synthesizes a pinna-related response from the image, which is used to filter a measured head-andtorso response. The interaural time difference is then manipulated to match that of the HUTUBS dataset subject minimizing the predicted localization error. The results are evaluated using spectral distortion and an auditory localization model. While the latter is inconclusive regarding the efficacy of the structural model, the former metric shows promising results with encoding HRTFs. Index Terms: Hardware—Digital signal processing; Computing methodologies—Neural networks; Applied computing—Sound and music computing\",\"PeriodicalId\":256204,\"journal\":{\"name\":\"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW52623.2021.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW52623.2021.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一种个性化头部相关传递函数(HRTF)建模的混合方法,该方法只需要3个人体测量值和一个耳廓图像。一种基于变分自编码器的预测算法从图像中合成与峰相关的响应,用于过滤测量的头部和躯干响应。然后,在最小化预测定位误差的前提下,对间隔时差进行处理,使其与HUTUBS数据集的时差相匹配。使用频谱失真和听觉定位模型对结果进行评估。虽然后者对结构模型的有效性尚无定论,但前者在编码hrtf方面显示出有希望的结果。检索术语:硬件-数字信号处理;计算方法-神经网络;应用计算——声音和音乐计算
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid approach to structural modeling of individualized HRTFs
We present a hybrid approach to individualized head-related transfer function (HRTF) modeling which requires only 3 anthropometric measurements and an image of the pinna. A prediction algorithm based on variational autoencoders synthesizes a pinna-related response from the image, which is used to filter a measured head-andtorso response. The interaural time difference is then manipulated to match that of the HUTUBS dataset subject minimizing the predicted localization error. The results are evaluated using spectral distortion and an auditory localization model. While the latter is inconclusive regarding the efficacy of the structural model, the former metric shows promising results with encoding HRTFs. Index Terms: Hardware—Digital signal processing; Computing methodologies—Neural networks; Applied computing—Sound and music computing
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信