用萤火虫算法设计稳定分数阶系统的分数阶IMC控制器

K. Gnaneshwar, Rishika Trivedi, Bharat Verma, P. Padhy
{"title":"用萤火虫算法设计稳定分数阶系统的分数阶IMC控制器","authors":"K. Gnaneshwar, Rishika Trivedi, Bharat Verma, P. Padhy","doi":"10.1109/CAPS52117.2021.9730735","DOIUrl":null,"url":null,"abstract":"In this paper design of fractional order controller for stable systems based on the IMC approach is presented. The proposed method creates a filter internally; therefore, phase lag obtained by an external filter in the system response can be avoided with the proposed method. It has the capacity to regulate the transient response and robustness of the system with a single parameter. This parameter plays a vital role to obtain the optimum response. Hence, a metaheuristic algorithm is considered. Numerous performance parameters and performance are considered to examine the proposed methodology efficacy. The proposed methodology performance has been carried out under load disturbance, robustness analysis. Also, its performance has been compared with various existing techniques.","PeriodicalId":445427,"journal":{"name":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of fractional IMC controller for stable fractional order systems using firefly algorithm\",\"authors\":\"K. Gnaneshwar, Rishika Trivedi, Bharat Verma, P. Padhy\",\"doi\":\"10.1109/CAPS52117.2021.9730735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper design of fractional order controller for stable systems based on the IMC approach is presented. The proposed method creates a filter internally; therefore, phase lag obtained by an external filter in the system response can be avoided with the proposed method. It has the capacity to regulate the transient response and robustness of the system with a single parameter. This parameter plays a vital role to obtain the optimum response. Hence, a metaheuristic algorithm is considered. Numerous performance parameters and performance are considered to examine the proposed methodology efficacy. The proposed methodology performance has been carried out under load disturbance, robustness analysis. Also, its performance has been compared with various existing techniques.\",\"PeriodicalId\":445427,\"journal\":{\"name\":\"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAPS52117.2021.9730735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAPS52117.2021.9730735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于内模控制方法的稳定系统分数阶控制器的设计。所提出的方法在内部创建一个过滤器;因此,该方法可以避免系统响应中外部滤波器产生的相位滞后。它具有调节系统暂态响应的能力和单参数系统的鲁棒性。该参数对获得最优响应起着至关重要的作用。因此,本文考虑了一种元启发式算法。考虑了许多性能参数和性能来检验所提出的方法的有效性。所提出的方法在负载扰动下进行了性能、鲁棒性分析。并将其性能与现有的各种技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of fractional IMC controller for stable fractional order systems using firefly algorithm
In this paper design of fractional order controller for stable systems based on the IMC approach is presented. The proposed method creates a filter internally; therefore, phase lag obtained by an external filter in the system response can be avoided with the proposed method. It has the capacity to regulate the transient response and robustness of the system with a single parameter. This parameter plays a vital role to obtain the optimum response. Hence, a metaheuristic algorithm is considered. Numerous performance parameters and performance are considered to examine the proposed methodology efficacy. The proposed methodology performance has been carried out under load disturbance, robustness analysis. Also, its performance has been compared with various existing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信