直觉模糊赋范空间中数列的对数可和性

E. Yavuz
{"title":"直觉模糊赋范空间中数列的对数可和性","authors":"E. Yavuz","doi":"10.33401/fujma.792994","DOIUrl":null,"url":null,"abstract":"We introduce logarithmic summability in intuitionistic fuzzy normed spaces($IFNS$) and give some Tauberian conditions for which logarithmic summability yields convergence in $IFNS$. Besides, we define the concept of slow oscillation with respect to logarithmic summability in $IFNS$, investigate its relation with the concept of q-boundedness and give Tauberian theorems by means of q-boundedness and slow oscillation with respect to logarithmic summability. A comparison theorem between Ces\\`{a}ro summability method and logarithmic summability method in $IFNS$ is also proved in the paper.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Logarithmic Summability of Sequences in Intuitionistic Fuzzy Normed Spaces\",\"authors\":\"E. Yavuz\",\"doi\":\"10.33401/fujma.792994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce logarithmic summability in intuitionistic fuzzy normed spaces($IFNS$) and give some Tauberian conditions for which logarithmic summability yields convergence in $IFNS$. Besides, we define the concept of slow oscillation with respect to logarithmic summability in $IFNS$, investigate its relation with the concept of q-boundedness and give Tauberian theorems by means of q-boundedness and slow oscillation with respect to logarithmic summability. A comparison theorem between Ces\\\\`{a}ro summability method and logarithmic summability method in $IFNS$ is also proved in the paper.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.792994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.792994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

引入直觉模糊赋范空间($IFNS$)上的对数可和性,给出了在$IFNS$上对数可和性产生收敛的一些Tauberian条件。此外,我们定义了$IFNS$中关于对数可和性的慢振荡的概念,研究了它与q有界性的关系,并利用q有界性和关于对数可和性的慢振荡给出了Tauberian定理。本文还证明了$IFNS$中ce \ {A} o可和性方法与对数可和性方法的比较定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Logarithmic Summability of Sequences in Intuitionistic Fuzzy Normed Spaces
We introduce logarithmic summability in intuitionistic fuzzy normed spaces($IFNS$) and give some Tauberian conditions for which logarithmic summability yields convergence in $IFNS$. Besides, we define the concept of slow oscillation with respect to logarithmic summability in $IFNS$, investigate its relation with the concept of q-boundedness and give Tauberian theorems by means of q-boundedness and slow oscillation with respect to logarithmic summability. A comparison theorem between Ces\`{a}ro summability method and logarithmic summability method in $IFNS$ is also proved in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信