基于小波卷积神经网络的MVDC船舶电力系统非侵入式负荷监测

Soroush Senemmar, J. Zhang
{"title":"基于小波卷积神经网络的MVDC船舶电力系统非侵入式负荷监测","authors":"Soroush Senemmar, J. Zhang","doi":"10.1109/TPEC54980.2022.9750745","DOIUrl":null,"url":null,"abstract":"This paper develops a non-intrusive load monitoring (NILM) method in future shipboard power systems (SPS) using discrete wavelet transform-based convolutional neural networks (CNN). We have applied the proposed NILM method to a two-zone medium voltage direct current (MVDC) SPS, with multiple appliances in each zone such as pulsed load, radar load, motor load, and hotel load. The input to the proposed NILM model only includes the current signal of generators, which will be first processed by a discrete wavelet transform, to form a coefficient matrix that represents the status of all the appliances in each zone. Then, a CNN model is adopted to monitor the load in real time by solving a multi-class classification problem. Results show that the proposed wavelet-based CNN model for NILM could: (i) determine the status of all appliances with an overall accuracy of more than 97%, and (ii) monitor specific pulsed loads with an accuracy of more than 98%.","PeriodicalId":185211,"journal":{"name":"2022 IEEE Texas Power and Energy Conference (TPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-intrusive Load Monitoring in MVDC Shipboard Power Systems using Wavelet-Convolutional Neural Networks\",\"authors\":\"Soroush Senemmar, J. Zhang\",\"doi\":\"10.1109/TPEC54980.2022.9750745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a non-intrusive load monitoring (NILM) method in future shipboard power systems (SPS) using discrete wavelet transform-based convolutional neural networks (CNN). We have applied the proposed NILM method to a two-zone medium voltage direct current (MVDC) SPS, with multiple appliances in each zone such as pulsed load, radar load, motor load, and hotel load. The input to the proposed NILM model only includes the current signal of generators, which will be first processed by a discrete wavelet transform, to form a coefficient matrix that represents the status of all the appliances in each zone. Then, a CNN model is adopted to monitor the load in real time by solving a multi-class classification problem. Results show that the proposed wavelet-based CNN model for NILM could: (i) determine the status of all appliances with an overall accuracy of more than 97%, and (ii) monitor specific pulsed loads with an accuracy of more than 98%.\",\"PeriodicalId\":185211,\"journal\":{\"name\":\"2022 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC54980.2022.9750745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC54980.2022.9750745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于离散小波变换的卷积神经网络(CNN)在未来舰船电力系统(SPS)中的非侵入式负荷监测(NILM)方法。我们将提出的NILM方法应用于两区中压直流(MVDC) SPS,每个区域有多个电器,如脉冲负载,雷达负载,电机负载和酒店负载。所提出的NILM模型的输入仅包括发电机的电流信号,该信号将首先通过离散小波变换进行处理,形成代表每个区域中所有电器状态的系数矩阵。然后,通过求解多类分类问题,采用CNN模型对负荷进行实时监控。结果表明,所提出的基于小波的CNN NILM模型可以:(i)以超过97%的总体精度确定所有电器的状态,(ii)以超过98%的精度监测特定脉冲负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-intrusive Load Monitoring in MVDC Shipboard Power Systems using Wavelet-Convolutional Neural Networks
This paper develops a non-intrusive load monitoring (NILM) method in future shipboard power systems (SPS) using discrete wavelet transform-based convolutional neural networks (CNN). We have applied the proposed NILM method to a two-zone medium voltage direct current (MVDC) SPS, with multiple appliances in each zone such as pulsed load, radar load, motor load, and hotel load. The input to the proposed NILM model only includes the current signal of generators, which will be first processed by a discrete wavelet transform, to form a coefficient matrix that represents the status of all the appliances in each zone. Then, a CNN model is adopted to monitor the load in real time by solving a multi-class classification problem. Results show that the proposed wavelet-based CNN model for NILM could: (i) determine the status of all appliances with an overall accuracy of more than 97%, and (ii) monitor specific pulsed loads with an accuracy of more than 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信