{"title":"涡轮编码单载波比奈奎斯特传输快","authors":"Mohammad Javad Abdoli, Ming Jia, Jianglei Ma","doi":"10.1109/SPAWC.2014.6941377","DOIUrl":null,"url":null,"abstract":"Faster than Nyquist (FTN) transmission is investigated for a point-to-point AWGN link. The FTN is interpreted as a form of coding at the pulse shape level, and accordingly, the so-called Mazo phenomenon is interpreted as a coding gain. Then, it is shown by simulation that such a gain can disappear in a coded FTN transmission with a powerful FEC code, such as turbo code. This result undermines the FTN transmission as an effective technique in an actual communication system.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"30 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Turbo-coded single-carrier faster-than-Nyquist transmission\",\"authors\":\"Mohammad Javad Abdoli, Ming Jia, Jianglei Ma\",\"doi\":\"10.1109/SPAWC.2014.6941377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faster than Nyquist (FTN) transmission is investigated for a point-to-point AWGN link. The FTN is interpreted as a form of coding at the pulse shape level, and accordingly, the so-called Mazo phenomenon is interpreted as a coding gain. Then, it is shown by simulation that such a gain can disappear in a coded FTN transmission with a powerful FEC code, such as turbo code. This result undermines the FTN transmission as an effective technique in an actual communication system.\",\"PeriodicalId\":420837,\"journal\":{\"name\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"30 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2014.6941377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Faster than Nyquist (FTN) transmission is investigated for a point-to-point AWGN link. The FTN is interpreted as a form of coding at the pulse shape level, and accordingly, the so-called Mazo phenomenon is interpreted as a coding gain. Then, it is shown by simulation that such a gain can disappear in a coded FTN transmission with a powerful FEC code, such as turbo code. This result undermines the FTN transmission as an effective technique in an actual communication system.