论s型和布尔阈值电路的计算能力

W. Maass, G. Schnitger, Eduardo Sontag
{"title":"论s型和布尔阈值电路的计算能力","authors":"W. Maass, G. Schnitger, Eduardo Sontag","doi":"10.1109/SFCS.1991.185447","DOIUrl":null,"url":null,"abstract":"The power of constant depth circuits with sigmoid (i.e., smooth) threshold gates for computing Boolean functions is examined. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size Boolean threshold circuits (i.e., circuits with Boolean threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid threshold circuits with polynomially bounded weights compute exactly the same Boolean functions as the corresponding circuits with Boolean threshold gates.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"57 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":"{\"title\":\"On the computational power of sigmoid versus Boolean threshold circuits\",\"authors\":\"W. Maass, G. Schnitger, Eduardo Sontag\",\"doi\":\"10.1109/SFCS.1991.185447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power of constant depth circuits with sigmoid (i.e., smooth) threshold gates for computing Boolean functions is examined. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size Boolean threshold circuits (i.e., circuits with Boolean threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid threshold circuits with polynomially bounded weights compute exactly the same Boolean functions as the corresponding circuits with Boolean threshold gates.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"57 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"115\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115

摘要

研究了具有s型(即光滑)阈值门的等深度电路计算布尔函数的能力。结果表明,对于深度2,这种类型的恒定大小电路严格地比恒定大小的布尔阈值电路(即具有布尔阈值门的电路)更强大。另一方面,对于任意恒定的深度d,具有多项式有界权的多项式大小的s型阈值电路与具有布尔阈值门的相应电路计算出完全相同的布尔函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the computational power of sigmoid versus Boolean threshold circuits
The power of constant depth circuits with sigmoid (i.e., smooth) threshold gates for computing Boolean functions is examined. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size Boolean threshold circuits (i.e., circuits with Boolean threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid threshold circuits with polynomially bounded weights compute exactly the same Boolean functions as the corresponding circuits with Boolean threshold gates.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信