等变德拉姆定理的一个证明提纲

L. Tu
{"title":"等变德拉姆定理的一个证明提纲","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.28","DOIUrl":null,"url":null,"abstract":"This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outline of a Proof of the Equivariant de Rham Theorem\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章概述了等变德拉姆定理的证明。1950年,Henri Cartan证明了连通李群G的主G束基的上同调可以由总空间的Weil模型计算得到。从卡坦定理推导出自由运动的等变德拉姆定理并不太难。Guillemin和Sternberg提出了一个等变德拉姆定理的代数证明,尽管有些细节似乎缺失。Guillemin, Ginzburg和Karshon在附录中概述了他的缺失。Guillemin、Ginzburg和Karshon在附录中概述了使用Mayer-Vietoris论证的另一种方法。Mayer-Vietoris论证的一个限制是它只适用于具有有限良好覆盖的流形。这一章提供了一般情况的证明,没有对流形的限制,并提供了所有的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outline of a Proof of the Equivariant de Rham Theorem
This chapter offers an outline of a proof of the equivariant de Rham theorem. In 1950, Henri Cartan proved that the cohomology of the base of a principal G-bundle for a connected Lie group G can be computed from the Weil model of the total space. From Cartan's theorem it is not too difficult to deduce the equivariant de Rham theorem for a free action. Guillemin and Sternberg presents an algebraic proof of the equivariant de Rham theorem, although some details appear to be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of be missing. Guillemin, Ginzburg, and Karshon outline in an appendix of a different approach using the Mayer–Vietoris argument. A limitation of the Mayer–Vietoris argument is that it applies only to manifolds with a finite good cover. The chapter provides a proof of the general case with no restrictions on the manifold and with all the details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信