{"title":"多项式概率模型的估计:一种新的校正算法","authors":"W. Kamakura","doi":"10.1287/trsc.23.4.253","DOIUrl":null,"url":null,"abstract":"This study proposes the estimation of Multinomial Probit models using Mendell-Elston's approximation to the cumulative multivariate normal for the computation of choice probabilities. The accuracy of this numerical approximation in computing probabilities is compared with other procedures used in existing calibration programs. Finally, the proposed estimation procedure is tested on simulated choice data.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"The Estimation of Multinomial Probit Models: A New Calibration Algorithm\",\"authors\":\"W. Kamakura\",\"doi\":\"10.1287/trsc.23.4.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes the estimation of Multinomial Probit models using Mendell-Elston's approximation to the cumulative multivariate normal for the computation of choice probabilities. The accuracy of this numerical approximation in computing probabilities is compared with other procedures used in existing calibration programs. Finally, the proposed estimation procedure is tested on simulated choice data.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.23.4.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.23.4.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Estimation of Multinomial Probit Models: A New Calibration Algorithm
This study proposes the estimation of Multinomial Probit models using Mendell-Elston's approximation to the cumulative multivariate normal for the computation of choice probabilities. The accuracy of this numerical approximation in computing probabilities is compared with other procedures used in existing calibration programs. Finally, the proposed estimation procedure is tested on simulated choice data.