非线性系统中因果相互作用的改进指标

N. Kollas, S. Gewehr, S. Mourelatos, I. Kioutsioukis
{"title":"非线性系统中因果相互作用的改进指标","authors":"N. Kollas, S. Gewehr, S. Mourelatos, I. Kioutsioukis","doi":"10.3390/environsciproc2023026092","DOIUrl":null,"url":null,"abstract":": Utilizing an extension of Pearson’s correlation in the case of random vectors, we improve the empirical dynamic modeling causal analysis of non-linear systems. To prove the effectiveness of the use of such an extension we analyze two real-world examples, the paramecium-didinium protozoan system and the influence of environmental variables on mosquito abundance in northern Greece. In both examples it is shown that the causal analysis based on the extended metric outperforms the usual method of measuring the correlation between observed and predicted values of a single vector component.","PeriodicalId":357261,"journal":{"name":"16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Indicator for Causal Interaction in Non-Linear Systems\",\"authors\":\"N. Kollas, S. Gewehr, S. Mourelatos, I. Kioutsioukis\",\"doi\":\"10.3390/environsciproc2023026092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Utilizing an extension of Pearson’s correlation in the case of random vectors, we improve the empirical dynamic modeling causal analysis of non-linear systems. To prove the effectiveness of the use of such an extension we analyze two real-world examples, the paramecium-didinium protozoan system and the influence of environmental variables on mosquito abundance in northern Greece. In both examples it is shown that the causal analysis based on the extended metric outperforms the usual method of measuring the correlation between observed and predicted values of a single vector component.\",\"PeriodicalId\":357261,\"journal\":{\"name\":\"16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/environsciproc2023026092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International Conference on Meteorology, Climatology and Atmospheric Physics—COMECAP 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environsciproc2023026092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在随机向量的情况下,利用皮尔逊相关的扩展,我们改进了非线性系统的经验动态建模因果分析。为了证明使用这种扩展的有效性,我们分析了两个现实世界的例子,草履虫-二虫原虫系统和环境变量对希腊北部蚊子丰度的影响。在这两个例子中都表明,基于扩展度量的因果分析优于通常测量单个矢量分量的观测值和预测值之间相关性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Indicator for Causal Interaction in Non-Linear Systems
: Utilizing an extension of Pearson’s correlation in the case of random vectors, we improve the empirical dynamic modeling causal analysis of non-linear systems. To prove the effectiveness of the use of such an extension we analyze two real-world examples, the paramecium-didinium protozoan system and the influence of environmental variables on mosquito abundance in northern Greece. In both examples it is shown that the causal analysis based on the extended metric outperforms the usual method of measuring the correlation between observed and predicted values of a single vector component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信