{"title":"不一致的转换系统","authors":"A. Cruz, A. Madeira, LuA-A-s Soares Barbosa","doi":"10.4204/EPTCS.376.3","DOIUrl":null,"url":null,"abstract":"Often in Software Engineering, a modeling formalism has to support scenarios of inconsistency in which several requirements either reinforce or contradict each other. Paraconsistent transition systems are proposed in this paper as one such formalism: states evolve through two accessibility relations capturing weighted evidence of a transition or its absence, respectively. Their weights come from a specific residuated lattice. A category of these systems, and the corresponding algebra, is defined as providing a formal setting to model different application scenarios. One of them, dealing with the effect of quantum decoherence in quantum programs, is used for illustration purposes.","PeriodicalId":374401,"journal":{"name":"Workshop on Logical and Semantic Frameworks with Applications","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paraconsistent Transition Systems\",\"authors\":\"A. Cruz, A. Madeira, LuA-A-s Soares Barbosa\",\"doi\":\"10.4204/EPTCS.376.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Often in Software Engineering, a modeling formalism has to support scenarios of inconsistency in which several requirements either reinforce or contradict each other. Paraconsistent transition systems are proposed in this paper as one such formalism: states evolve through two accessibility relations capturing weighted evidence of a transition or its absence, respectively. Their weights come from a specific residuated lattice. A category of these systems, and the corresponding algebra, is defined as providing a formal setting to model different application scenarios. One of them, dealing with the effect of quantum decoherence in quantum programs, is used for illustration purposes.\",\"PeriodicalId\":374401,\"journal\":{\"name\":\"Workshop on Logical and Semantic Frameworks with Applications\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Logical and Semantic Frameworks with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.376.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Logical and Semantic Frameworks with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.376.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Often in Software Engineering, a modeling formalism has to support scenarios of inconsistency in which several requirements either reinforce or contradict each other. Paraconsistent transition systems are proposed in this paper as one such formalism: states evolve through two accessibility relations capturing weighted evidence of a transition or its absence, respectively. Their weights come from a specific residuated lattice. A category of these systems, and the corresponding algebra, is defined as providing a formal setting to model different application scenarios. One of them, dealing with the effect of quantum decoherence in quantum programs, is used for illustration purposes.