用于重金属去除的双组分ZrO2/Ag纳米管的合成

Lee Wei Xuan, Mohd Fadhil Majnis, Syahriza Ismail, Mohd Azam Mohd Adnan
{"title":"用于重金属去除的双组分ZrO2/Ag纳米管的合成","authors":"Lee Wei Xuan, Mohd Fadhil Majnis, Syahriza Ismail, Mohd Azam Mohd Adnan","doi":"10.37934/progee.18.1.2333","DOIUrl":null,"url":null,"abstract":"This study was conducted to synthesize bi-component ZrO2/Ag nanotubes through anodization and photoreduction methods. The synthesized nanotubes were characterized and adsorption tests were carried out to evaluate its performance in removing heavy metal, lead (II). ZrO2 nanotubes were synthesized by anodizing zirconium foil in an electrolyte composed of glycerol, ammonium fluoride, formamide, and distilled water. The effect of anodizing time and the annealing process on the morphology of synthesized nanotubes were studied. Bi-component ZrO2/Ag nanotubes were prepared through photochemical reduction which silver precursor solution undergoes Ultraviolet (UV) irradiation in the presence of the active reducing agent. Larger pore diameter and longer length of synthesized nanotubes were formed at the longer anodizing time and the walls of nanotubes were smoother without annealing. The effect of the initial heavy metal concentration and contact time on the adsorption efficiency of synthesized nanotubes was evaluated using lead (II) as the heavy metal ions. Overall, the percentage removal of lead (II) increased with longer adsorption time and higher initial concentration of the lead (II) ions.","PeriodicalId":235296,"journal":{"name":"Progress in Energy and Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of bi-component ZrO2/Ag nanotube for heavy metal removal\",\"authors\":\"Lee Wei Xuan, Mohd Fadhil Majnis, Syahriza Ismail, Mohd Azam Mohd Adnan\",\"doi\":\"10.37934/progee.18.1.2333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study was conducted to synthesize bi-component ZrO2/Ag nanotubes through anodization and photoreduction methods. The synthesized nanotubes were characterized and adsorption tests were carried out to evaluate its performance in removing heavy metal, lead (II). ZrO2 nanotubes were synthesized by anodizing zirconium foil in an electrolyte composed of glycerol, ammonium fluoride, formamide, and distilled water. The effect of anodizing time and the annealing process on the morphology of synthesized nanotubes were studied. Bi-component ZrO2/Ag nanotubes were prepared through photochemical reduction which silver precursor solution undergoes Ultraviolet (UV) irradiation in the presence of the active reducing agent. Larger pore diameter and longer length of synthesized nanotubes were formed at the longer anodizing time and the walls of nanotubes were smoother without annealing. The effect of the initial heavy metal concentration and contact time on the adsorption efficiency of synthesized nanotubes was evaluated using lead (II) as the heavy metal ions. Overall, the percentage removal of lead (II) increased with longer adsorption time and higher initial concentration of the lead (II) ions.\",\"PeriodicalId\":235296,\"journal\":{\"name\":\"Progress in Energy and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/progee.18.1.2333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/progee.18.1.2333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用阳极氧化和光还原法制备了双组分ZrO2/Ag纳米管。对合成的纳米管进行了表征,并进行了吸附试验,以评价其去除重金属铅(II)的性能。采用氧化锆箔在甘油、氟化铵、甲酰胺和蒸馏水组成的电解液中阳极氧化的方法合成了ZrO2纳米管。研究了阳极氧化时间和退火工艺对合成纳米管形貌的影响。采用光化学还原法制备了双组分ZrO2/Ag纳米管,将银前驱体溶液在活性还原剂存在下进行紫外线照射。阳极氧化时间越长,所合成的纳米管孔径越大、长度越长,且未经退火处理的纳米管壁越光滑。以铅(II)为重金属离子,考察了初始重金属浓度和接触时间对合成纳米管吸附效率的影响。总体而言,吸附时间越长,铅离子初始浓度越高,铅(II)的去除率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of bi-component ZrO2/Ag nanotube for heavy metal removal
This study was conducted to synthesize bi-component ZrO2/Ag nanotubes through anodization and photoreduction methods. The synthesized nanotubes were characterized and adsorption tests were carried out to evaluate its performance in removing heavy metal, lead (II). ZrO2 nanotubes were synthesized by anodizing zirconium foil in an electrolyte composed of glycerol, ammonium fluoride, formamide, and distilled water. The effect of anodizing time and the annealing process on the morphology of synthesized nanotubes were studied. Bi-component ZrO2/Ag nanotubes were prepared through photochemical reduction which silver precursor solution undergoes Ultraviolet (UV) irradiation in the presence of the active reducing agent. Larger pore diameter and longer length of synthesized nanotubes were formed at the longer anodizing time and the walls of nanotubes were smoother without annealing. The effect of the initial heavy metal concentration and contact time on the adsorption efficiency of synthesized nanotubes was evaluated using lead (II) as the heavy metal ions. Overall, the percentage removal of lead (II) increased with longer adsorption time and higher initial concentration of the lead (II) ions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信