未确定录音的隐藏成分分析

W. Y. Leong
{"title":"未确定录音的隐藏成分分析","authors":"W. Y. Leong","doi":"10.1109/ICIEA.2008.4582667","DOIUrl":null,"url":null,"abstract":"The aim of the study is to recover and detect the neglected hidden mirror neurons in the neuronal spikes recordings. The investigation and the detection of the hidden neurons were conducted using the standard and ensemble and complex Empirical Mode Decomposition (EMD). The extension to the field of complex numbers C is particularly important for the analysis of phase-dependent neuronal study. This allows us to combine the data driven nature of EMD with the power of complex algebra to model amplitude-phase relationships of the neurons. The analysis shows that the extensions of EMD to the recordings are magnificent. Simulations on trains of spiking neurons support the analysis.","PeriodicalId":309894,"journal":{"name":"2008 3rd IEEE Conference on Industrial Electronics and Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidden component analysis of undetermined recordings\",\"authors\":\"W. Y. Leong\",\"doi\":\"10.1109/ICIEA.2008.4582667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study is to recover and detect the neglected hidden mirror neurons in the neuronal spikes recordings. The investigation and the detection of the hidden neurons were conducted using the standard and ensemble and complex Empirical Mode Decomposition (EMD). The extension to the field of complex numbers C is particularly important for the analysis of phase-dependent neuronal study. This allows us to combine the data driven nature of EMD with the power of complex algebra to model amplitude-phase relationships of the neurons. The analysis shows that the extensions of EMD to the recordings are magnificent. Simulations on trains of spiking neurons support the analysis.\",\"PeriodicalId\":309894,\"journal\":{\"name\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2008.4582667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2008.4582667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是恢复和检测在神经元峰记录中被忽略的隐藏镜像神经元。利用标准、集成和复杂经验模态分解(EMD)对隐藏神经元进行调查和检测。向复数C领域的扩展对于相依赖神经元研究的分析尤为重要。这使我们能够将EMD的数据驱动特性与复杂代数的力量相结合,以模拟神经元的幅相关系。分析表明,EMD对录音的扩展是非常可观的。对尖峰神经元序列的模拟支持了这一分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden component analysis of undetermined recordings
The aim of the study is to recover and detect the neglected hidden mirror neurons in the neuronal spikes recordings. The investigation and the detection of the hidden neurons were conducted using the standard and ensemble and complex Empirical Mode Decomposition (EMD). The extension to the field of complex numbers C is particularly important for the analysis of phase-dependent neuronal study. This allows us to combine the data driven nature of EMD with the power of complex algebra to model amplitude-phase relationships of the neurons. The analysis shows that the extensions of EMD to the recordings are magnificent. Simulations on trains of spiking neurons support the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信