基于轻量级深度学习的矢状面磁共振图像健康前交叉韧带自动识别

A. Siouras, S. Moustakidis, A. Giannakidis, G. Chalatsis, K. Malizos, M. Hantes, Sotiris K. Tasoulis, D. Tsaopoulos
{"title":"基于轻量级深度学习的矢状面磁共振图像健康前交叉韧带自动识别","authors":"A. Siouras, S. Moustakidis, A. Giannakidis, G. Chalatsis, K. Malizos, M. Hantes, Sotiris K. Tasoulis, D. Tsaopoulos","doi":"10.1109/IISA56318.2022.9904387","DOIUrl":null,"url":null,"abstract":"Anterior cruciate ligament (ACL) tears are very common among athletes. The success of enhanced ACL injury therapy hinges on accurate and cost-effective detection. Deep learning-based techniques have recently dominated ACL injury detection in MRI research. The goal of this study is to develop a robust and lightweight deep learning pipeline for identifying ACL in 3D MRI data of healthy knees. Specifically, we aim at finding the slices in the sagittal plane where the ACL is present. This could be utilized by clinicians for further evaluation. To this end, we build and test an advanced pipeline that relies on the newest object detection network, YOLOv5-Nano. We go on to compare our model to other pipelines that rely on YOLOv5-xlarge, YOLOX-small and YOLOX-nano. YOLOv5-nano is shown to be the best performer, obtaining the highest overall mAP@0.5 performance (0.9727) on augmented data, while at the same time having the smallest model size (3.7 MB). Conclusive object detection is a key step in identifying damage. YOLOv5-nano offers a great solution towards achieving robust object detection healthcare systems that will permit local processing by devices with limited computational resources.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Recognition of healthy Anterior Cruciate Ligament in Sagittal MR images using Lightweight Deep Learning\",\"authors\":\"A. Siouras, S. Moustakidis, A. Giannakidis, G. Chalatsis, K. Malizos, M. Hantes, Sotiris K. Tasoulis, D. Tsaopoulos\",\"doi\":\"10.1109/IISA56318.2022.9904387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anterior cruciate ligament (ACL) tears are very common among athletes. The success of enhanced ACL injury therapy hinges on accurate and cost-effective detection. Deep learning-based techniques have recently dominated ACL injury detection in MRI research. The goal of this study is to develop a robust and lightweight deep learning pipeline for identifying ACL in 3D MRI data of healthy knees. Specifically, we aim at finding the slices in the sagittal plane where the ACL is present. This could be utilized by clinicians for further evaluation. To this end, we build and test an advanced pipeline that relies on the newest object detection network, YOLOv5-Nano. We go on to compare our model to other pipelines that rely on YOLOv5-xlarge, YOLOX-small and YOLOX-nano. YOLOv5-nano is shown to be the best performer, obtaining the highest overall mAP@0.5 performance (0.9727) on augmented data, while at the same time having the smallest model size (3.7 MB). Conclusive object detection is a key step in identifying damage. YOLOv5-nano offers a great solution towards achieving robust object detection healthcare systems that will permit local processing by devices with limited computational resources.\",\"PeriodicalId\":217519,\"journal\":{\"name\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISA56318.2022.9904387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

前交叉韧带(ACL)撕裂在运动员中很常见。增强前交叉韧带损伤治疗的成功取决于准确和经济有效的检测。基于深度学习的技术近年来在MRI研究中主导了ACL损伤检测。本研究的目标是开发一种鲁棒且轻量级的深度学习管道,用于识别健康膝关节的3D MRI数据中的ACL。具体来说,我们的目标是在前交叉韧带所在的矢状面找到切片。这可以被临床医生用于进一步的评估。为此,我们建立并测试了一个先进的管道,它依赖于最新的目标检测网络,YOLOv5-Nano。我们继续将我们的模型与其他依赖于YOLOv5-xlarge、YOLOX-small和YOLOX-nano的管道进行比较。YOLOv5-nano表现最好,在增强数据上获得最高的mAP@0.5总体性能(0.9727),同时具有最小的模型大小(3.7 MB)。结论性目标检测是识别损伤的关键步骤。YOLOv5-nano为实现健壮的对象检测医疗保健系统提供了一个很好的解决方案,该系统将允许计算资源有限的设备进行本地处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Recognition of healthy Anterior Cruciate Ligament in Sagittal MR images using Lightweight Deep Learning
Anterior cruciate ligament (ACL) tears are very common among athletes. The success of enhanced ACL injury therapy hinges on accurate and cost-effective detection. Deep learning-based techniques have recently dominated ACL injury detection in MRI research. The goal of this study is to develop a robust and lightweight deep learning pipeline for identifying ACL in 3D MRI data of healthy knees. Specifically, we aim at finding the slices in the sagittal plane where the ACL is present. This could be utilized by clinicians for further evaluation. To this end, we build and test an advanced pipeline that relies on the newest object detection network, YOLOv5-Nano. We go on to compare our model to other pipelines that rely on YOLOv5-xlarge, YOLOX-small and YOLOX-nano. YOLOv5-nano is shown to be the best performer, obtaining the highest overall mAP@0.5 performance (0.9727) on augmented data, while at the same time having the smallest model size (3.7 MB). Conclusive object detection is a key step in identifying damage. YOLOv5-nano offers a great solution towards achieving robust object detection healthcare systems that will permit local processing by devices with limited computational resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信