{"title":"基于自主LOCA分析平台ARSAC的核电厂LBLOCA分析与建模方法研究","authors":"Jiayue Zhou, Dan Wu, Shuhua Ding, G.-L. Jiang","doi":"10.1115/icone2020-16820","DOIUrl":null,"url":null,"abstract":"\n In order to meet the demand of continuous innovation of technologies and the general trend of autonomous nuclear power plants design and export of nuclear power plants, it is necessary to develop an autonomous LOCA analysis platform and corresponding analysis methods for the most complex design basis accidents. In this paper, the characteristics of LOCA analysis platform ARSAC, designed by Nuclear Power Institute of China, and the code ARSAC-K which meets the requirements of the US Federal Code 10 CFR 50.46 Appendix K model are introduced as well as a set of LOCA analysis methods and modeling methods. Based on the international advanced LOCA analysis code development concept, the code ARSAC has made new breakthroughs in matrix algorithms, key thermal hydraulic models and so on. Validation work has also been carried out in-depth. A set of advanced LOCA analysis methods has been developed using code ARSAC-K and advanced power plant parameter sampling methods. Analysis on LBLOCA of nuclear power plants with code ARSAC-K was performed, and the impact of different modeling methods on the LOCA analysis results was studied. To ensure the rationality and conservativeness of the analysis results, a set of reasonable and conservative modeling methods is fixed on the basis of a large number of sensitivity analyses for subsequent analysis and calculation. In the future, a lot of optimization work will be done to improve the LOCA code and corresponding methods.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on Analysis and Modeling Methods for LBLOCA in Nuclear Power Plants Based on Autonomous LOCA Analysis Platform ARSAC\",\"authors\":\"Jiayue Zhou, Dan Wu, Shuhua Ding, G.-L. Jiang\",\"doi\":\"10.1115/icone2020-16820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to meet the demand of continuous innovation of technologies and the general trend of autonomous nuclear power plants design and export of nuclear power plants, it is necessary to develop an autonomous LOCA analysis platform and corresponding analysis methods for the most complex design basis accidents. In this paper, the characteristics of LOCA analysis platform ARSAC, designed by Nuclear Power Institute of China, and the code ARSAC-K which meets the requirements of the US Federal Code 10 CFR 50.46 Appendix K model are introduced as well as a set of LOCA analysis methods and modeling methods. Based on the international advanced LOCA analysis code development concept, the code ARSAC has made new breakthroughs in matrix algorithms, key thermal hydraulic models and so on. Validation work has also been carried out in-depth. A set of advanced LOCA analysis methods has been developed using code ARSAC-K and advanced power plant parameter sampling methods. Analysis on LBLOCA of nuclear power plants with code ARSAC-K was performed, and the impact of different modeling methods on the LOCA analysis results was studied. To ensure the rationality and conservativeness of the analysis results, a set of reasonable and conservative modeling methods is fixed on the basis of a large number of sensitivity analyses for subsequent analysis and calculation. In the future, a lot of optimization work will be done to improve the LOCA code and corresponding methods.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Analysis and Modeling Methods for LBLOCA in Nuclear Power Plants Based on Autonomous LOCA Analysis Platform ARSAC
In order to meet the demand of continuous innovation of technologies and the general trend of autonomous nuclear power plants design and export of nuclear power plants, it is necessary to develop an autonomous LOCA analysis platform and corresponding analysis methods for the most complex design basis accidents. In this paper, the characteristics of LOCA analysis platform ARSAC, designed by Nuclear Power Institute of China, and the code ARSAC-K which meets the requirements of the US Federal Code 10 CFR 50.46 Appendix K model are introduced as well as a set of LOCA analysis methods and modeling methods. Based on the international advanced LOCA analysis code development concept, the code ARSAC has made new breakthroughs in matrix algorithms, key thermal hydraulic models and so on. Validation work has also been carried out in-depth. A set of advanced LOCA analysis methods has been developed using code ARSAC-K and advanced power plant parameter sampling methods. Analysis on LBLOCA of nuclear power plants with code ARSAC-K was performed, and the impact of different modeling methods on the LOCA analysis results was studied. To ensure the rationality and conservativeness of the analysis results, a set of reasonable and conservative modeling methods is fixed on the basis of a large number of sensitivity analyses for subsequent analysis and calculation. In the future, a lot of optimization work will be done to improve the LOCA code and corresponding methods.