多媒体检索的无监督远程学习框架

Lucas Pascotti Valem, D. C. G. Pedronette
{"title":"多媒体检索的无监督远程学习框架","authors":"Lucas Pascotti Valem, D. C. G. Pedronette","doi":"10.1145/3078971.3079017","DOIUrl":null,"url":null,"abstract":"Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Unsupervised Distance Learning Framework for Multimedia Retrieval\",\"authors\":\"Lucas Pascotti Valem, D. C. G. Pedronette\",\"doi\":\"10.1145/3078971.3079017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.\",\"PeriodicalId\":403556,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078971.3079017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于图像和多媒体馆藏的可用性越来越高,无需用户干预就能提高检索结果有效性的无监督后处理方法变得必不可少。本文介绍了无监督远程学习框架(UDLF),这是一个能够轻松使用和评估无监督学习方法的软件。该框架定义了一个广泛的模型,允许实现不同的无监督方法,并支持不同的输入和输出文件格式。该框架最初提供了七种不同的无监督方法。通过设置配置文件,可以很容易地定义执行和实验。该框架还包括对检索结果的评价,输出可视化输出结果,计算效果和效率度量。源代码是公开的,因此任何人都可以在GPLv2许可的条款下自由地访问、使用、更改和共享该软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Unsupervised Distance Learning Framework for Multimedia Retrieval
Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信