无参考视频质量评估的局部退化特征融合

Martin D. Dimitrievski, Z. Ivanovski
{"title":"无参考视频质量评估的局部退化特征融合","authors":"Martin D. Dimitrievski, Z. Ivanovski","doi":"10.1109/MLSP.2012.6349737","DOIUrl":null,"url":null,"abstract":"We propose a blind/No-Reference Video Quality Assessment (NR-VQA) algorithm using models for visibility of local spatio-temporal degradations. The paper focuses on the specific degradations present in H.264 coded videos and their impact on perceived visual quality. Joint and marginal distributions of local wavelet coefficients are used to train Epsilon Support Vector Regression (ε-SVR) models for specific degradation levels in order to predict the overall subjective scores. Separate models for low/medium/high activity regions within the video frames are considered, inspired from the nature of H.264 coder behavior. Experimental results show that blind assessment of video quality is possible as the proposed algorithm output correlates highly with human perception of quality.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fusion of local degradation features for No-Reference Video Quality Assessment\",\"authors\":\"Martin D. Dimitrievski, Z. Ivanovski\",\"doi\":\"10.1109/MLSP.2012.6349737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a blind/No-Reference Video Quality Assessment (NR-VQA) algorithm using models for visibility of local spatio-temporal degradations. The paper focuses on the specific degradations present in H.264 coded videos and their impact on perceived visual quality. Joint and marginal distributions of local wavelet coefficients are used to train Epsilon Support Vector Regression (ε-SVR) models for specific degradation levels in order to predict the overall subjective scores. Separate models for low/medium/high activity regions within the video frames are considered, inspired from the nature of H.264 coder behavior. Experimental results show that blind assessment of video quality is possible as the proposed algorithm output correlates highly with human perception of quality.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于局部时空退化可见性模型的盲/无参考视频质量评估(NR-VQA)算法。本文的重点是H.264编码视频中存在的特定退化及其对感知视觉质量的影响。利用局部小波系数的联合分布和边际分布来训练Epsilon支持向量回归(ε-SVR)模型,以预测特定退化水平的总体主观评分。考虑了视频帧内低/中/高活动区域的单独模型,灵感来自H.264编码器行为的本质。实验结果表明,由于该算法的输出与人类对视频质量的感知高度相关,因此可以对视频质量进行盲评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fusion of local degradation features for No-Reference Video Quality Assessment
We propose a blind/No-Reference Video Quality Assessment (NR-VQA) algorithm using models for visibility of local spatio-temporal degradations. The paper focuses on the specific degradations present in H.264 coded videos and their impact on perceived visual quality. Joint and marginal distributions of local wavelet coefficients are used to train Epsilon Support Vector Regression (ε-SVR) models for specific degradation levels in order to predict the overall subjective scores. Separate models for low/medium/high activity regions within the video frames are considered, inspired from the nature of H.264 coder behavior. Experimental results show that blind assessment of video quality is possible as the proposed algorithm output correlates highly with human perception of quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信