一般各向异性的二维时谐边界元法应用于石英谐振器的特征值分析

Mitsunori Dendal, Y. Yong
{"title":"一般各向异性的二维时谐边界元法应用于石英谐振器的特征值分析","authors":"Mitsunori Dendal, Y. Yong","doi":"10.1109/FREQ.2001.956362","DOIUrl":null,"url":null,"abstract":"The two-dimensional time-harmonic Boundary Element Method (BEM) for the general anisotropy is presented and applied to the eigen frequency analysis of quartz resonators. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM without domain integrals. The resulting eigenvalue problem, given by a full matrix with each element depending nonlinearly on the frequency, is reduced to a generalized linear eigenvalue problem, which is solved by the QZ algorithm. Numerical results are presented for eigenvalue analysis of quartz and compared with existing FEM and analytical solutions. The proposed BEM equals or surpasses the performance of the FEM in its accuracy.","PeriodicalId":369101,"journal":{"name":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-D time-harmonic BEM for general anisotropy applied to eigenvalue analysis of quartz resonators\",\"authors\":\"Mitsunori Dendal, Y. Yong\",\"doi\":\"10.1109/FREQ.2001.956362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two-dimensional time-harmonic Boundary Element Method (BEM) for the general anisotropy is presented and applied to the eigen frequency analysis of quartz resonators. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM without domain integrals. The resulting eigenvalue problem, given by a full matrix with each element depending nonlinearly on the frequency, is reduced to a generalized linear eigenvalue problem, which is solved by the QZ algorithm. Numerical results are presented for eigenvalue analysis of quartz and compared with existing FEM and analytical solutions. The proposed BEM equals or surpasses the performance of the FEM in its accuracy.\",\"PeriodicalId\":369101,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2001.956362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Frequncy Control Symposium and PDA Exhibition (Cat. No.01CH37218)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2001.956362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一般各向异性的二维时谐边界元法(BEM),并将其应用于石英谐振器的本征频率分析。使用时谐基本解提供了一个干净的边界元公式,没有域积分。所得到的特征值问题是由每个元素与频率非线性相关的满矩阵给出的,它被简化为一个广义线性特征值问题,并由QZ算法求解。给出了石英特征值分析的数值结果,并与现有的有限元分析和解析解进行了比较。所提出的边界元法在精度上等于或优于有限元法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-D time-harmonic BEM for general anisotropy applied to eigenvalue analysis of quartz resonators
The two-dimensional time-harmonic Boundary Element Method (BEM) for the general anisotropy is presented and applied to the eigen frequency analysis of quartz resonators. The use of the time-harmonic fundamental solution provides a clean boundary only formulation of the BEM without domain integrals. The resulting eigenvalue problem, given by a full matrix with each element depending nonlinearly on the frequency, is reduced to a generalized linear eigenvalue problem, which is solved by the QZ algorithm. Numerical results are presented for eigenvalue analysis of quartz and compared with existing FEM and analytical solutions. The proposed BEM equals or surpasses the performance of the FEM in its accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信