一种基于两阶段鲁棒统计的多类型特征时间配准方法

Gilles Simon, M. Berger
{"title":"一种基于两阶段鲁棒统计的多类型特征时间配准方法","authors":"Gilles Simon, M. Berger","doi":"10.1109/ICCV.1998.710728","DOIUrl":null,"url":null,"abstract":"A model registration system capable of tracking an object, the model of which is known, in an image sequence is presented. It integrates tracking, pose determination and updating of the visible features. The heart of our system is the pose computation method, which handles various features (points, lines and free-form curves) in a very robust way and is able to give a correct estimate of the pose even when tracking errors occur. The reliability of the system is shown on an augmented reality project.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"A two-stage robust statistical method for temporal registration from features of various type\",\"authors\":\"Gilles Simon, M. Berger\",\"doi\":\"10.1109/ICCV.1998.710728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model registration system capable of tracking an object, the model of which is known, in an image sequence is presented. It integrates tracking, pose determination and updating of the visible features. The heart of our system is the pose computation method, which handles various features (points, lines and free-form curves) in a very robust way and is able to give a correct estimate of the pose even when tracking errors occur. The reliability of the system is shown on an augmented reality project.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

提出了一种模型配准系统,能够对图像序列中已知模型的目标进行跟踪。它集成了跟踪,姿态确定和更新的可见特征。我们系统的核心是姿态计算方法,它以非常稳健的方式处理各种特征(点,线和自由形式曲线),即使在跟踪错误发生时也能够给出正确的姿态估计。在一个增强现实项目中验证了该系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-stage robust statistical method for temporal registration from features of various type
A model registration system capable of tracking an object, the model of which is known, in an image sequence is presented. It integrates tracking, pose determination and updating of the visible features. The heart of our system is the pose computation method, which handles various features (points, lines and free-form curves) in a very robust way and is able to give a correct estimate of the pose even when tracking errors occur. The reliability of the system is shown on an augmented reality project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信