C. Fall, A. Campeau-Lecours, C. Gosselin, B. Gosselin
{"title":"结合头部运动和表面肌电的可穿戴无线人机界面对上半身残疾人的评估","authors":"C. Fall, A. Campeau-Lecours, C. Gosselin, B. Gosselin","doi":"10.1109/NEWCAS.2018.8585522","DOIUrl":null,"url":null,"abstract":"In this paper, a wearable, wireless and multimodal 2-dimensional computer mouse control system is introduced for people with upper-body disabilities. The proposed human-computer interface system combines body-motion, measured using inertial measurement unit (IMU), to provide a cursor velocity and displacement control, and surface electromyography (sEMG) for target selection (left-click), using custom sensors made of electronic components of the shelf. Its functionality is demonstrated by using head motion and muscular activity detection from trapeze muscles to evaluate usability by people living with severe disabilities, congenital absence or amputation of upper-members, temporary limb traumatism, etc., preventing their utilization of tools such as mouse or keyboard. Performance using different control topologies, following the ISO/TS 9241-411:2012 standard encompassing the evaluation of physical pointing tasks, and compared to a computer mouse. On average, over the 3 participants, results show that the proposed interface can provide an index of performance of 0.18 bits/s versus 2.2 bits/s with a mouse pointer. Head motion combined with sEMG showed a 4% accuracy drop computer to the mouse while being more suitable for the severely disabled.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evaluation of a Wearable and Wireless Human-Computer Interface Combining Head Motion and sEMG for People with Upper-Body Disabilities\",\"authors\":\"C. Fall, A. Campeau-Lecours, C. Gosselin, B. Gosselin\",\"doi\":\"10.1109/NEWCAS.2018.8585522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a wearable, wireless and multimodal 2-dimensional computer mouse control system is introduced for people with upper-body disabilities. The proposed human-computer interface system combines body-motion, measured using inertial measurement unit (IMU), to provide a cursor velocity and displacement control, and surface electromyography (sEMG) for target selection (left-click), using custom sensors made of electronic components of the shelf. Its functionality is demonstrated by using head motion and muscular activity detection from trapeze muscles to evaluate usability by people living with severe disabilities, congenital absence or amputation of upper-members, temporary limb traumatism, etc., preventing their utilization of tools such as mouse or keyboard. Performance using different control topologies, following the ISO/TS 9241-411:2012 standard encompassing the evaluation of physical pointing tasks, and compared to a computer mouse. On average, over the 3 participants, results show that the proposed interface can provide an index of performance of 0.18 bits/s versus 2.2 bits/s with a mouse pointer. Head motion combined with sEMG showed a 4% accuracy drop computer to the mouse while being more suitable for the severely disabled.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of a Wearable and Wireless Human-Computer Interface Combining Head Motion and sEMG for People with Upper-Body Disabilities
In this paper, a wearable, wireless and multimodal 2-dimensional computer mouse control system is introduced for people with upper-body disabilities. The proposed human-computer interface system combines body-motion, measured using inertial measurement unit (IMU), to provide a cursor velocity and displacement control, and surface electromyography (sEMG) for target selection (left-click), using custom sensors made of electronic components of the shelf. Its functionality is demonstrated by using head motion and muscular activity detection from trapeze muscles to evaluate usability by people living with severe disabilities, congenital absence or amputation of upper-members, temporary limb traumatism, etc., preventing their utilization of tools such as mouse or keyboard. Performance using different control topologies, following the ISO/TS 9241-411:2012 standard encompassing the evaluation of physical pointing tasks, and compared to a computer mouse. On average, over the 3 participants, results show that the proposed interface can provide an index of performance of 0.18 bits/s versus 2.2 bits/s with a mouse pointer. Head motion combined with sEMG showed a 4% accuracy drop computer to the mouse while being more suitable for the severely disabled.