{"title":"无流底填料用非酸酐固化体系的研究","authors":"Zhuqing Zhang, L. Fan, C. Wong","doi":"10.1109/ECTC.2001.928031","DOIUrl":null,"url":null,"abstract":"Most no-flow underfill materials are based on epoxy/anhydride chemistry. Due to the its sensitizing nature, the use of anhydride is limited and there is a need for a no-flow underfill using non-anhydride curing system. This paper presents the development of novel no-flow underfill materials based on epoxy/phenolic resin system. Epoxy and phenolic resins of different structures are evaluated in term of their curing behavior, thermo-mechanical properties and the reliability. Compared with anhydride cured epoxy resins, epoxy/phenolic resins show high adhesion, high fracture toughness, low crosslinking density and high viscosity. The assembly with non-anhydride underfill shows high reliability during the thermal shock test. Using proper fluxing agent, no-flow underfills based on epoxy/phenolic system have been developed.","PeriodicalId":340217,"journal":{"name":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of non-anhydride curing system for no-flow underfill applications\",\"authors\":\"Zhuqing Zhang, L. Fan, C. Wong\",\"doi\":\"10.1109/ECTC.2001.928031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most no-flow underfill materials are based on epoxy/anhydride chemistry. Due to the its sensitizing nature, the use of anhydride is limited and there is a need for a no-flow underfill using non-anhydride curing system. This paper presents the development of novel no-flow underfill materials based on epoxy/phenolic resin system. Epoxy and phenolic resins of different structures are evaluated in term of their curing behavior, thermo-mechanical properties and the reliability. Compared with anhydride cured epoxy resins, epoxy/phenolic resins show high adhesion, high fracture toughness, low crosslinking density and high viscosity. The assembly with non-anhydride underfill shows high reliability during the thermal shock test. Using proper fluxing agent, no-flow underfills based on epoxy/phenolic system have been developed.\",\"PeriodicalId\":340217,\"journal\":{\"name\":\"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2001.928031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2001.928031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of non-anhydride curing system for no-flow underfill applications
Most no-flow underfill materials are based on epoxy/anhydride chemistry. Due to the its sensitizing nature, the use of anhydride is limited and there is a need for a no-flow underfill using non-anhydride curing system. This paper presents the development of novel no-flow underfill materials based on epoxy/phenolic resin system. Epoxy and phenolic resins of different structures are evaluated in term of their curing behavior, thermo-mechanical properties and the reliability. Compared with anhydride cured epoxy resins, epoxy/phenolic resins show high adhesion, high fracture toughness, low crosslinking density and high viscosity. The assembly with non-anhydride underfill shows high reliability during the thermal shock test. Using proper fluxing agent, no-flow underfills based on epoxy/phenolic system have been developed.