由高八面体不变多项式定义的代数系统的临界点计算

Thi Xuan Vu
{"title":"由高八面体不变多项式定义的代数系统的临界点计算","authors":"Thi Xuan Vu","doi":"10.1145/3476446.3536181","DOIUrl":null,"url":null,"abstract":"Let K be a field of characteristic zero and K[x1,...,xn] the corresponding multivariate polynomial ring. Given a sequence of s polynomials f = (f_1,...,f_s) and a polynomial φ, all in K[x1,...,xn] with s>n, we consider the problem of computing the set W(φ,f ) of points at which f vanishes and the Jacobian matrix of f, φ with respect to x1,...,xn does not have full rank. This problem plays an essential role in many application areas.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Computing Critical Points for Algebraic Systems Defined by Hyperoctahedral Invariant Polynomials\",\"authors\":\"Thi Xuan Vu\",\"doi\":\"10.1145/3476446.3536181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K be a field of characteristic zero and K[x1,...,xn] the corresponding multivariate polynomial ring. Given a sequence of s polynomials f = (f_1,...,f_s) and a polynomial φ, all in K[x1,...,xn] with s>n, we consider the problem of computing the set W(φ,f ) of points at which f vanishes and the Jacobian matrix of f, φ with respect to x1,...,xn does not have full rank. This problem plays an essential role in many application areas.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3536181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3536181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设K为特征为0的域,K[x1,…],xn]对应的多元多项式环。给定一个s个多项式序列f = (f_1,…,f_s)和一个多项式φ,它们都在K[x1,…],xn]与s>n,我们考虑计算f消失点的集合W(φ,f)和f, φ关于x1,…的雅可比矩阵问题。,xn没有满秩。这个问题在许多应用领域起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Critical Points for Algebraic Systems Defined by Hyperoctahedral Invariant Polynomials
Let K be a field of characteristic zero and K[x1,...,xn] the corresponding multivariate polynomial ring. Given a sequence of s polynomials f = (f_1,...,f_s) and a polynomial φ, all in K[x1,...,xn] with s>n, we consider the problem of computing the set W(φ,f ) of points at which f vanishes and the Jacobian matrix of f, φ with respect to x1,...,xn does not have full rank. This problem plays an essential role in many application areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信