具有可用性的最优线性LRC码的最大码长

S. Kruglik, Kamilla Nazirkhanova, A. Frolov
{"title":"具有可用性的最优线性LRC码的最大码长","authors":"S. Kruglik, Kamilla Nazirkhanova, A. Frolov","doi":"10.1109/EnT-MIPT.2018.00018","DOIUrl":null,"url":null,"abstract":"A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties.","PeriodicalId":131975,"journal":{"name":"2018 Engineering and Telecommunication (EnT-MIPT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Maximal Code Length of Optimal Linear LRC Codes with Availability\",\"authors\":\"S. Kruglik, Kamilla Nazirkhanova, A. Frolov\",\"doi\":\"10.1109/EnT-MIPT.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties.\",\"PeriodicalId\":131975,\"journal\":{\"name\":\"2018 Engineering and Telecommunication (EnT-MIPT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Engineering and Telecommunication (EnT-MIPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EnT-MIPT.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Engineering and Telecommunication (EnT-MIPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT-MIPT.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如果一个有限字母上的代码符号是组成恢复集[1],[2],[3],[4],[5]的少量其他符号的函数,则称其为局部可恢复的(LRC)。这些代码最初是在b[1]中提出的,并且由于在分布式和云存储系统中的明显应用而立即流行起来。LRC码的自然泛化是指具有可用性的LRC码,其中每个码号具有一个以上的不相交恢复集。具有可用性的LRC码,如果其最小距离达到Kruglik等人提出的类单胞界,则称为最优码。本文研究了具有可用性的q元最优LRC码的最大码长,并推导出一些结构性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Maximal Code Length of Optimal Linear LRC Codes with Availability
A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信