一种基于神经网络的图像处理系统,用于无人驾驶铁路环境中的破坏行为检测

C. Sacchi, C. Regazzoni, G. Vernazza
{"title":"一种基于神经网络的图像处理系统,用于无人驾驶铁路环境中的破坏行为检测","authors":"C. Sacchi, C. Regazzoni, G. Vernazza","doi":"10.1109/ICIAP.2001.957064","DOIUrl":null,"url":null,"abstract":"Lately, the interest in advanced video-based surveillance applications has been increasing. This is especially true in the field of urban railway transport where video-based surveillance can be exploited to face many relevant security aspects (e.g. vandalism, overcrowding, abandoned object detection etc.). This paper aims at investigating an open problem in the implementation of video-based surveillance systems for transport applications, i.e., the implementation of reliable image understanding modules in order to recognize dangerous situations with reduced false alarm and misdetection rates. We considered the use of a neural network-based classifier for detecting vandal behavior in metro stations. The achieved results show that the classifier achieves very good performance even in the presence of high scene complexity.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A neural network-based image processing system for detection of vandal acts in unmanned railway environments\",\"authors\":\"C. Sacchi, C. Regazzoni, G. Vernazza\",\"doi\":\"10.1109/ICIAP.2001.957064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lately, the interest in advanced video-based surveillance applications has been increasing. This is especially true in the field of urban railway transport where video-based surveillance can be exploited to face many relevant security aspects (e.g. vandalism, overcrowding, abandoned object detection etc.). This paper aims at investigating an open problem in the implementation of video-based surveillance systems for transport applications, i.e., the implementation of reliable image understanding modules in order to recognize dangerous situations with reduced false alarm and misdetection rates. We considered the use of a neural network-based classifier for detecting vandal behavior in metro stations. The achieved results show that the classifier achieves very good performance even in the presence of high scene complexity.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.957064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.957064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

最近,人们对基于视频的高级监控应用越来越感兴趣。在城市轨道交通领域尤其如此,视频监控可以被利用来面对许多相关的安全问题(例如破坏行为、过度拥挤、废弃物体检测等)。本文旨在研究交通应用中基于视频的监控系统实现中的一个开放问题,即实现可靠的图像理解模块,以减少误报和误检率来识别危险情况。我们考虑使用基于神经网络的分类器来检测地铁站的破坏行为。实验结果表明,该分类器在场景复杂度较高的情况下也能取得很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network-based image processing system for detection of vandal acts in unmanned railway environments
Lately, the interest in advanced video-based surveillance applications has been increasing. This is especially true in the field of urban railway transport where video-based surveillance can be exploited to face many relevant security aspects (e.g. vandalism, overcrowding, abandoned object detection etc.). This paper aims at investigating an open problem in the implementation of video-based surveillance systems for transport applications, i.e., the implementation of reliable image understanding modules in order to recognize dangerous situations with reduced false alarm and misdetection rates. We considered the use of a neural network-based classifier for detecting vandal behavior in metro stations. The achieved results show that the classifier achieves very good performance even in the presence of high scene complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信