{"title":"让你更快地工作:交通分配问题的遗传算法方法","authors":"Daniel Cagara, A. Bazzan, B. Scheuermann","doi":"10.1145/2598394.2598419","DOIUrl":null,"url":null,"abstract":"Traffic assignment is a complex optimization problem. In case the road network has many links (thus a high number of alternative routes) and multiple origin-destination pairs, most existing solutions approximate the so-called user equilibrium (a variant of Nash equilibrium). Furthermore, the quality of these solutions (mostly, iterative algorithms) come at the expense of computational performance. In this study, we introduce a methodology to evaluate an approximation of an optimal traffic assignment from the global network's perspective based on genetic algorithms. This approach has been investigated in terms of both network performance (travel time) and convergence speed.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Getting you faster to work: a genetic algorithm approach to the traffic assignment problem\",\"authors\":\"Daniel Cagara, A. Bazzan, B. Scheuermann\",\"doi\":\"10.1145/2598394.2598419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic assignment is a complex optimization problem. In case the road network has many links (thus a high number of alternative routes) and multiple origin-destination pairs, most existing solutions approximate the so-called user equilibrium (a variant of Nash equilibrium). Furthermore, the quality of these solutions (mostly, iterative algorithms) come at the expense of computational performance. In this study, we introduce a methodology to evaluate an approximation of an optimal traffic assignment from the global network's perspective based on genetic algorithms. This approach has been investigated in terms of both network performance (travel time) and convergence speed.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Getting you faster to work: a genetic algorithm approach to the traffic assignment problem
Traffic assignment is a complex optimization problem. In case the road network has many links (thus a high number of alternative routes) and multiple origin-destination pairs, most existing solutions approximate the so-called user equilibrium (a variant of Nash equilibrium). Furthermore, the quality of these solutions (mostly, iterative algorithms) come at the expense of computational performance. In this study, we introduce a methodology to evaluate an approximation of an optimal traffic assignment from the global network's perspective based on genetic algorithms. This approach has been investigated in terms of both network performance (travel time) and convergence speed.