{"title":"基于可靠性感知的最优综合参数整定设计空间探索","authors":"I. Tuzov, D. Andrés, J. Ruiz","doi":"10.1109/DSN.2017.18","DOIUrl":null,"url":null,"abstract":"This paper studies the impact of logical synthesizers parameters on the performance, power-consumption, area (PPA) and dependability of HW implementations. Deducing optimal synthesis-parameter configurations attending to specific goals is challenging even for simple HW models. The proposal relies on fractional factorial design of experiments to minimize simulation-based fault-injection time. The set of synthesis parameters with an statistically significant impact on PPA and dependability goals is then deduced and regression models are generated to estimate such impact for any synthesis-parameter configuration. Optimal configurations are finally selected attending to specific implementation goals. The whole methodology is automated and applied onto the Xilinx XST synthesizer working on a simplex and TMR version of an enhanced Intel 8051 microcontroller model, but it can be potentially applied to any synthesizer and any HDL-based model. Results show that non-negligible benefits in terms of PPA and dependability can be obtained by simply tuning synthesizer parameters in a proper way.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dependability-Aware Design Space Exploration for Optimal Synthesis Parameters Tuning\",\"authors\":\"I. Tuzov, D. Andrés, J. Ruiz\",\"doi\":\"10.1109/DSN.2017.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the impact of logical synthesizers parameters on the performance, power-consumption, area (PPA) and dependability of HW implementations. Deducing optimal synthesis-parameter configurations attending to specific goals is challenging even for simple HW models. The proposal relies on fractional factorial design of experiments to minimize simulation-based fault-injection time. The set of synthesis parameters with an statistically significant impact on PPA and dependability goals is then deduced and regression models are generated to estimate such impact for any synthesis-parameter configuration. Optimal configurations are finally selected attending to specific implementation goals. The whole methodology is automated and applied onto the Xilinx XST synthesizer working on a simplex and TMR version of an enhanced Intel 8051 microcontroller model, but it can be potentially applied to any synthesizer and any HDL-based model. Results show that non-negligible benefits in terms of PPA and dependability can be obtained by simply tuning synthesizer parameters in a proper way.\",\"PeriodicalId\":426928,\"journal\":{\"name\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2017.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependability-Aware Design Space Exploration for Optimal Synthesis Parameters Tuning
This paper studies the impact of logical synthesizers parameters on the performance, power-consumption, area (PPA) and dependability of HW implementations. Deducing optimal synthesis-parameter configurations attending to specific goals is challenging even for simple HW models. The proposal relies on fractional factorial design of experiments to minimize simulation-based fault-injection time. The set of synthesis parameters with an statistically significant impact on PPA and dependability goals is then deduced and regression models are generated to estimate such impact for any synthesis-parameter configuration. Optimal configurations are finally selected attending to specific implementation goals. The whole methodology is automated and applied onto the Xilinx XST synthesizer working on a simplex and TMR version of an enhanced Intel 8051 microcontroller model, but it can be potentially applied to any synthesizer and any HDL-based model. Results show that non-negligible benefits in terms of PPA and dependability can be obtained by simply tuning synthesizer parameters in a proper way.