自主地面车辆目标偏置RRT路径规划方法

Xianjian Jin, Zeyuan Yan, Hang Yang, Qikang Wang, Guo-dong Yin
{"title":"自主地面车辆目标偏置RRT路径规划方法","authors":"Xianjian Jin, Zeyuan Yan, Hang Yang, Qikang Wang, Guo-dong Yin","doi":"10.1109/CVCI51460.2020.9338597","DOIUrl":null,"url":null,"abstract":"For the application of autonomous ground vehicle (AGV) operating in unstructured environment, a path planning method based on an improved goal-biased Rapidly-exploring Random Trees (bias-RRT) is proposed. The algorithm combines random sampling with numerical optimization to achieve fast convergence speed and satisfy constraints. KD-Tree and potential field of the environment are implemented to increase the sampling efficiency, and cubic B-splines are used to smooth the path for better tracking performance. The algorithm improves the efficiency of searching while guarantee safety and quality of the planned path. Simulation results verify the effectiveness of the proposed method.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Goal-Biased RRT Path Planning Approach for Autonomous Ground Vehicle\",\"authors\":\"Xianjian Jin, Zeyuan Yan, Hang Yang, Qikang Wang, Guo-dong Yin\",\"doi\":\"10.1109/CVCI51460.2020.9338597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the application of autonomous ground vehicle (AGV) operating in unstructured environment, a path planning method based on an improved goal-biased Rapidly-exploring Random Trees (bias-RRT) is proposed. The algorithm combines random sampling with numerical optimization to achieve fast convergence speed and satisfy constraints. KD-Tree and potential field of the environment are implemented to increase the sampling efficiency, and cubic B-splines are used to smooth the path for better tracking performance. The algorithm improves the efficiency of searching while guarantee safety and quality of the planned path. Simulation results verify the effectiveness of the proposed method.\",\"PeriodicalId\":119721,\"journal\":{\"name\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVCI51460.2020.9338597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

针对自主地面车辆(AGV)在非结构化环境中的应用,提出了一种基于改进目标偏置快速探索随机树(bias-RRT)的路径规划方法。该算法将随机抽样与数值优化相结合,收敛速度快,满足约束条件。利用环境的KD-Tree和势场来提高采样效率,利用三次b样条来平滑路径以获得更好的跟踪性能。该算法提高了搜索效率,同时保证了规划路径的安全性和质量。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Goal-Biased RRT Path Planning Approach for Autonomous Ground Vehicle
For the application of autonomous ground vehicle (AGV) operating in unstructured environment, a path planning method based on an improved goal-biased Rapidly-exploring Random Trees (bias-RRT) is proposed. The algorithm combines random sampling with numerical optimization to achieve fast convergence speed and satisfy constraints. KD-Tree and potential field of the environment are implemented to increase the sampling efficiency, and cubic B-splines are used to smooth the path for better tracking performance. The algorithm improves the efficiency of searching while guarantee safety and quality of the planned path. Simulation results verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信