一种防止分布式拒绝服务攻击的智能软件定义网络控制器

Aditya Prakash, R. Priyadarshini
{"title":"一种防止分布式拒绝服务攻击的智能软件定义网络控制器","authors":"Aditya Prakash, R. Priyadarshini","doi":"10.1109/ICICCT.2018.8473340","DOIUrl":null,"url":null,"abstract":"Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.","PeriodicalId":334934,"journal":{"name":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack\",\"authors\":\"Aditya Prakash, R. Priyadarshini\",\"doi\":\"10.1109/ICICCT.2018.8473340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.\",\"PeriodicalId\":334934,\"journal\":{\"name\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCT.2018.8473340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCT.2018.8473340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

软件定义网络(SDN)架构是一种新颖的网络管理机制。在SDN中,交换机不像传统的网络计算环境那样处理传入的数据包。它们与转发表中的传入数据包相匹配,如果没有,它将被发送到控制器进行处理,控制器是SDN的操作系统。分布式拒绝服务(DDoS)攻击是SDN网络安全面临的最大威胁。攻击将发生在网络层或连接到网络的受损系统的应用层。本文提出了一种基于机器学习的智能检测方法,可以检测传入数据包是否被感染。用于完成任务的不同机器学习算法有朴素贝叶斯,k -最近邻(KNN)和支持向量机(SVM)来检测数据流量的异常行为。根据这三种算法的性能进行比较,发现KNN算法比其他两种算法更适合。此处的性能指标为感染报文的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack
Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信