深度学习编译器的变形测试

Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, Shuai Wang
{"title":"深度学习编译器的变形测试","authors":"Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, Shuai Wang","doi":"10.1145/3489048.3522655","DOIUrl":null,"url":null,"abstract":"The prosperous trend of deploying deep neural network (DNN) models to diverse hardware platforms has boosted the development of deep learning (DL) compilers. DL compilers take high-level DNN model specifications as input and generate optimized DNN executables for diverse hardware architectures like CPUs, GPUs, and hardware accelerators. We introduce MT-DLComp, a metamorphic testing framework specifically designed for DL compilers to uncover erroneous compilations. Our approach leverages deliberately-designed metamorphic relations (MRs) to launch semantics-preserving mutations toward DNN models to generate their variants. This way, DL compilers can be automatically tested for compilation correctness by comparing the execution outputs of the compiled DNN models and their variants without manual intervention. We detected over 435 inputs that can result in erroneous compilations in four popular DL compilers, all of which are industry-strength products maintained by Amazon, Facebook, Microsoft, and Google. We uncovered four bugs in these compilers by debugging them using the error-triggering inputs.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"760 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Metamorphic Testing of Deep Learning Compilers\",\"authors\":\"Dongwei Xiao, Zhibo Liu, Yuanyuan Yuan, Qi Pang, Shuai Wang\",\"doi\":\"10.1145/3489048.3522655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prosperous trend of deploying deep neural network (DNN) models to diverse hardware platforms has boosted the development of deep learning (DL) compilers. DL compilers take high-level DNN model specifications as input and generate optimized DNN executables for diverse hardware architectures like CPUs, GPUs, and hardware accelerators. We introduce MT-DLComp, a metamorphic testing framework specifically designed for DL compilers to uncover erroneous compilations. Our approach leverages deliberately-designed metamorphic relations (MRs) to launch semantics-preserving mutations toward DNN models to generate their variants. This way, DL compilers can be automatically tested for compilation correctness by comparing the execution outputs of the compiled DNN models and their variants without manual intervention. We detected over 435 inputs that can result in erroneous compilations in four popular DL compilers, all of which are industry-strength products maintained by Amazon, Facebook, Microsoft, and Google. We uncovered four bugs in these compilers by debugging them using the error-triggering inputs.\",\"PeriodicalId\":264598,\"journal\":{\"name\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"760 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489048.3522655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3522655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将深度神经网络(DNN)模型部署到各种硬件平台的繁荣趋势推动了深度学习(DL)编译器的发展。DL编译器将高级DNN模型规范作为输入,并为各种硬件架构(如cpu、gpu和硬件加速器)生成优化的DNN可执行文件。我们介绍MT-DLComp,这是一个专门为DL编译器设计的变形测试框架,用于发现错误的编译。我们的方法利用故意设计的变质关系(MRs),向DNN模型发起语义保留突变,以生成它们的变体。这样,通过比较已编译的DNN模型及其变体的执行输出,可以自动测试DL编译器的编译正确性,而无需人工干预。我们在四个流行的深度学习编译器中检测到超过435个可能导致错误编译的输入,所有这些编译器都是由Amazon、Facebook、Microsoft和b谷歌维护的行业级产品。通过使用触发错误的输入进行调试,我们发现了这些编译器中的四个错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metamorphic Testing of Deep Learning Compilers
The prosperous trend of deploying deep neural network (DNN) models to diverse hardware platforms has boosted the development of deep learning (DL) compilers. DL compilers take high-level DNN model specifications as input and generate optimized DNN executables for diverse hardware architectures like CPUs, GPUs, and hardware accelerators. We introduce MT-DLComp, a metamorphic testing framework specifically designed for DL compilers to uncover erroneous compilations. Our approach leverages deliberately-designed metamorphic relations (MRs) to launch semantics-preserving mutations toward DNN models to generate their variants. This way, DL compilers can be automatically tested for compilation correctness by comparing the execution outputs of the compiled DNN models and their variants without manual intervention. We detected over 435 inputs that can result in erroneous compilations in four popular DL compilers, all of which are industry-strength products maintained by Amazon, Facebook, Microsoft, and Google. We uncovered four bugs in these compilers by debugging them using the error-triggering inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信