基于支持向量机的复合核

Dingkun Ma, Xinquan Yang, Yin Kuang
{"title":"基于支持向量机的复合核","authors":"Dingkun Ma, Xinquan Yang, Yin Kuang","doi":"10.1109/ICCPS.2015.7454194","DOIUrl":null,"url":null,"abstract":"In order to raise the adapbility of SVM classification to the specific dataset, a composite kernel is proposed and introduced into SVM, and the parameters are optimized according to “Fisher Discriminant” and “Kernel Alignment”, to maximize the class separability in the empirical feature space and, make composite kernel to be more relevant for the dataset and adapt itself by adjusting its composed coefficient parameters, thus allowing more flexibility in the kernel choice. The performance of support vector machines based composite kernel (CK-SVM) is extensively evaluated on five UCI standard datasets, at the same time, we compare CK-SVM with other existing method and get convincing results, which reveal that the proposed method is a robust and promising classifier.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support vector machines based composite kernel\",\"authors\":\"Dingkun Ma, Xinquan Yang, Yin Kuang\",\"doi\":\"10.1109/ICCPS.2015.7454194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to raise the adapbility of SVM classification to the specific dataset, a composite kernel is proposed and introduced into SVM, and the parameters are optimized according to “Fisher Discriminant” and “Kernel Alignment”, to maximize the class separability in the empirical feature space and, make composite kernel to be more relevant for the dataset and adapt itself by adjusting its composed coefficient parameters, thus allowing more flexibility in the kernel choice. The performance of support vector machines based composite kernel (CK-SVM) is extensively evaluated on five UCI standard datasets, at the same time, we compare CK-SVM with other existing method and get convincing results, which reveal that the proposed method is a robust and promising classifier.\",\"PeriodicalId\":319991,\"journal\":{\"name\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Communication Problem-Solving (ICCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2015.7454194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高支持向量机分类对特定数据集的适应性,提出并在支持向量机中引入复合核,并根据“Fisher判别法”和“核对准法”对参数进行优化,最大限度地提高经验特征空间中的类可分性,并通过调整复合核的组成系数参数,使复合核与数据集的相关性更强,自适应能力更强,从而使核的选择更灵活。在5个UCI标准数据集上对基于支持向量机的复合核支持向量机(CK-SVM)进行了广泛的性能评估,同时将CK-SVM与其他现有方法进行了比较,得到了令人信服的结果,表明该方法是一种鲁棒的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vector machines based composite kernel
In order to raise the adapbility of SVM classification to the specific dataset, a composite kernel is proposed and introduced into SVM, and the parameters are optimized according to “Fisher Discriminant” and “Kernel Alignment”, to maximize the class separability in the empirical feature space and, make composite kernel to be more relevant for the dataset and adapt itself by adjusting its composed coefficient parameters, thus allowing more flexibility in the kernel choice. The performance of support vector machines based composite kernel (CK-SVM) is extensively evaluated on five UCI standard datasets, at the same time, we compare CK-SVM with other existing method and get convincing results, which reveal that the proposed method is a robust and promising classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信