海洋中尺度事件分类器的评价

M. Reggiannini, O. Papini, G. Pieri
{"title":"海洋中尺度事件分类器的评价","authors":"M. Reggiannini, O. Papini, G. Pieri","doi":"10.1109/ICASSPW59220.2023.10193234","DOIUrl":null,"url":null,"abstract":"Marine mesoscale phenomena are relevant oceanographic processes that impact on fishery, biodiversity and climate variation. In previous literature, their analysis has been tackled by processing instantaneous remote sensing observations and returning a classification of the observed event. Indeed, these phenomena occur within an extended time range, thus an analysis including time dependence is desirable. Mesoscale Events Classifier (MEC) is an algorithm devoted to the classification of marine mesoscale events in sea surface temperature imagery. By processing time series of satellite temperature observations MEC recognizes the considered area of interest as the domain of one out of a given number of possible events and returns the corresponding label. Objective of this work is to discuss the performance of the MEC pipeline in terms of its capability of correctly capturing the nature of the observed mesoscale process. The evaluation process exploited satellite remote sensing data collected in front of the Portuguese coast.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation Of A Marine Mesoscale Events Classifier\",\"authors\":\"M. Reggiannini, O. Papini, G. Pieri\",\"doi\":\"10.1109/ICASSPW59220.2023.10193234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine mesoscale phenomena are relevant oceanographic processes that impact on fishery, biodiversity and climate variation. In previous literature, their analysis has been tackled by processing instantaneous remote sensing observations and returning a classification of the observed event. Indeed, these phenomena occur within an extended time range, thus an analysis including time dependence is desirable. Mesoscale Events Classifier (MEC) is an algorithm devoted to the classification of marine mesoscale events in sea surface temperature imagery. By processing time series of satellite temperature observations MEC recognizes the considered area of interest as the domain of one out of a given number of possible events and returns the corresponding label. Objective of this work is to discuss the performance of the MEC pipeline in terms of its capability of correctly capturing the nature of the observed mesoscale process. The evaluation process exploited satellite remote sensing data collected in front of the Portuguese coast.\",\"PeriodicalId\":158726,\"journal\":{\"name\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSPW59220.2023.10193234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海洋中尺度现象是影响渔业、生物多样性和气候变化的相关海洋过程。在以前的文献中,他们的分析是通过处理瞬时遥感观测并返回观测事件的分类来解决的。事实上,这些现象发生在一个延长的时间范围内,因此,包括时间依赖性的分析是可取的。中尺度事件分类器(Mesoscale Events Classifier, MEC)是一种致力于对海表温度图像中的海洋中尺度事件进行分类的算法。通过处理卫星温度观测的时间序列,MEC将考虑的感兴趣区域识别为给定数量的可能事件中的一个域,并返回相应的标签。这项工作的目的是讨论MEC管道在正确捕获观测到的中尺度过程的性质方面的性能。评估过程利用了在葡萄牙海岸前收集的卫星遥感数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation Of A Marine Mesoscale Events Classifier
Marine mesoscale phenomena are relevant oceanographic processes that impact on fishery, biodiversity and climate variation. In previous literature, their analysis has been tackled by processing instantaneous remote sensing observations and returning a classification of the observed event. Indeed, these phenomena occur within an extended time range, thus an analysis including time dependence is desirable. Mesoscale Events Classifier (MEC) is an algorithm devoted to the classification of marine mesoscale events in sea surface temperature imagery. By processing time series of satellite temperature observations MEC recognizes the considered area of interest as the domain of one out of a given number of possible events and returns the corresponding label. Objective of this work is to discuss the performance of the MEC pipeline in terms of its capability of correctly capturing the nature of the observed mesoscale process. The evaluation process exploited satellite remote sensing data collected in front of the Portuguese coast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信