植物育种基因组选择中可靠训练群体的自适应遗传算法

S. C. Purbarani, Ito Wasito, Ilham Kusuma
{"title":"植物育种基因组选择中可靠训练群体的自适应遗传算法","authors":"S. C. Purbarani, Ito Wasito, Ilham Kusuma","doi":"10.1109/ICACSIS.2016.7872803","DOIUrl":null,"url":null,"abstract":"Many algorithms are developed to model Genomic Estimated Breeding Value (GEBV). Modeling GEBV evolves a huge size of genotype in both terms of the dimension (columns) and the instances (rows). Good combinations of features help in predicting which phenotype is being represented. Preparing a good training population sample is assumed to be a convenient solution to deal with such complex genotype data. In this research, an Adaptive Genetic Algorithm (AGA) is proposed. The adaptive characteristic of AGA by adjusting probabilities in crossover and mutation is expected to converge into the global optimum without getting trapped in local optima. The proposed method using AGA to optimize the feature selection and shrinkage mechanism is looked forward to provide a reliable model to be reused in other similar datasets.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"7 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive genetic algorithm for reliable training population in plant breeding genomic selection\",\"authors\":\"S. C. Purbarani, Ito Wasito, Ilham Kusuma\",\"doi\":\"10.1109/ICACSIS.2016.7872803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many algorithms are developed to model Genomic Estimated Breeding Value (GEBV). Modeling GEBV evolves a huge size of genotype in both terms of the dimension (columns) and the instances (rows). Good combinations of features help in predicting which phenotype is being represented. Preparing a good training population sample is assumed to be a convenient solution to deal with such complex genotype data. In this research, an Adaptive Genetic Algorithm (AGA) is proposed. The adaptive characteristic of AGA by adjusting probabilities in crossover and mutation is expected to converge into the global optimum without getting trapped in local optima. The proposed method using AGA to optimize the feature selection and shrinkage mechanism is looked forward to provide a reliable model to be reused in other similar datasets.\",\"PeriodicalId\":267924,\"journal\":{\"name\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"7 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2016.7872803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因组估计育种值(Genomic Estimated Breeding Value, GEBV)的建模算法有很多。GEBV建模在维度(列)和实例(行)方面都会演化出巨大的基因型。良好的特征组合有助于预测所代表的表型。准备一个好的训练总体样本被认为是处理这种复杂基因型数据的一个方便的解决方案。本研究提出一种自适应遗传算法(AGA)。遗传算法通过调整交叉和突变概率的自适应特性,使遗传算法收敛到全局最优而不陷入局部最优。本文提出的方法利用AGA优化特征选择和收缩机制,为其他类似数据集的重复使用提供可靠的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive genetic algorithm for reliable training population in plant breeding genomic selection
Many algorithms are developed to model Genomic Estimated Breeding Value (GEBV). Modeling GEBV evolves a huge size of genotype in both terms of the dimension (columns) and the instances (rows). Good combinations of features help in predicting which phenotype is being represented. Preparing a good training population sample is assumed to be a convenient solution to deal with such complex genotype data. In this research, an Adaptive Genetic Algorithm (AGA) is proposed. The adaptive characteristic of AGA by adjusting probabilities in crossover and mutation is expected to converge into the global optimum without getting trapped in local optima. The proposed method using AGA to optimize the feature selection and shrinkage mechanism is looked forward to provide a reliable model to be reused in other similar datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信