Y. A. Sari, Luthfi Maulana, Yusuf Gladiesnyah Bihanda, J. M. Maligan, Nabila Nur’aini, Dhea Rahma Widyadhana
{"title":"基于图像处理和AFLE算法增强智能营养盒原型特征的剩菜营养预测","authors":"Y. A. Sari, Luthfi Maulana, Yusuf Gladiesnyah Bihanda, J. M. Maligan, Nabila Nur’aini, Dhea Rahma Widyadhana","doi":"10.1109/IC2IE50715.2020.9274632","DOIUrl":null,"url":null,"abstract":"Some people tend to leave their food when eating caused by their changing lifestyle during the time. Leaving food means wasting its nutritional content acquired in people’s bodies. By understanding the number of nutrient loss, the factors that influence of leftovers food is found, so that, it can prevent the number of food waste. In this paper, we present a method of leftovers nutrition estimation from food images in a single tray box employing an image processing approach. This feature is also embedded in our prototype named as Smart Nutrition Box (SNB). We apply the Automatic Food Leftover Estimation (AFLE) algorithm, which is suitable to predict the weight of food images placed in the tray box. The information on food weight is then utilized for calculating nutrition inside food leftovers. By using Root Mean Square Error (RMSE), the experimental result achieves 1.35 of error. It shows that the proposed method is able to project the leftover nutrition of food.","PeriodicalId":211983,"journal":{"name":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leftovers Nutrition Prediction for Augmenting Smart Nutrition Box Prototype Feature Using Image Processing Approach and AFLE Algorithm\",\"authors\":\"Y. A. Sari, Luthfi Maulana, Yusuf Gladiesnyah Bihanda, J. M. Maligan, Nabila Nur’aini, Dhea Rahma Widyadhana\",\"doi\":\"10.1109/IC2IE50715.2020.9274632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some people tend to leave their food when eating caused by their changing lifestyle during the time. Leaving food means wasting its nutritional content acquired in people’s bodies. By understanding the number of nutrient loss, the factors that influence of leftovers food is found, so that, it can prevent the number of food waste. In this paper, we present a method of leftovers nutrition estimation from food images in a single tray box employing an image processing approach. This feature is also embedded in our prototype named as Smart Nutrition Box (SNB). We apply the Automatic Food Leftover Estimation (AFLE) algorithm, which is suitable to predict the weight of food images placed in the tray box. The information on food weight is then utilized for calculating nutrition inside food leftovers. By using Root Mean Square Error (RMSE), the experimental result achieves 1.35 of error. It shows that the proposed method is able to project the leftover nutrition of food.\",\"PeriodicalId\":211983,\"journal\":{\"name\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2IE50715.2020.9274632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Computer and Informatics Engineering (IC2IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2IE50715.2020.9274632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leftovers Nutrition Prediction for Augmenting Smart Nutrition Box Prototype Feature Using Image Processing Approach and AFLE Algorithm
Some people tend to leave their food when eating caused by their changing lifestyle during the time. Leaving food means wasting its nutritional content acquired in people’s bodies. By understanding the number of nutrient loss, the factors that influence of leftovers food is found, so that, it can prevent the number of food waste. In this paper, we present a method of leftovers nutrition estimation from food images in a single tray box employing an image processing approach. This feature is also embedded in our prototype named as Smart Nutrition Box (SNB). We apply the Automatic Food Leftover Estimation (AFLE) algorithm, which is suitable to predict the weight of food images placed in the tray box. The information on food weight is then utilized for calculating nutrition inside food leftovers. By using Root Mean Square Error (RMSE), the experimental result achieves 1.35 of error. It shows that the proposed method is able to project the leftover nutrition of food.