基于支持向量机优化的粒子群优化的电力项目投资风险评价

Shuliang Liu, Zhi-zhou Yin
{"title":"基于支持向量机优化的粒子群优化的电力项目投资风险评价","authors":"Shuliang Liu, Zhi-zhou Yin","doi":"10.1109/ASEMD.2009.5306625","DOIUrl":null,"url":null,"abstract":"In this paper, we use Particle Swarm Optimization with Support Vector Machine Optimized to evaluate the Investment risk of electrical project. A hybrid intelligent system is applied to Evaluation of electrical equipment, combining Particle Swarm Optimize Algorithm (PSO) and Support Vector Machines (SVM). At first, we can make use of PSO obtaining appropriate parameters in order to improve the general recognizing ability of SVM. And then, these parameters are used to develop classification rules and train SVM. The effectiveness of our methodology was verified by experiments comparing BP neural networks with our approach.","PeriodicalId":354649,"journal":{"name":"2009 International Conference on Applied Superconductivity and Electromagnetic Devices","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluating the investment risk of electrical project based on particle swarm optimization with support vector machine optimized\",\"authors\":\"Shuliang Liu, Zhi-zhou Yin\",\"doi\":\"10.1109/ASEMD.2009.5306625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use Particle Swarm Optimization with Support Vector Machine Optimized to evaluate the Investment risk of electrical project. A hybrid intelligent system is applied to Evaluation of electrical equipment, combining Particle Swarm Optimize Algorithm (PSO) and Support Vector Machines (SVM). At first, we can make use of PSO obtaining appropriate parameters in order to improve the general recognizing ability of SVM. And then, these parameters are used to develop classification rules and train SVM. The effectiveness of our methodology was verified by experiments comparing BP neural networks with our approach.\",\"PeriodicalId\":354649,\"journal\":{\"name\":\"2009 International Conference on Applied Superconductivity and Electromagnetic Devices\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Applied Superconductivity and Electromagnetic Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASEMD.2009.5306625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Applied Superconductivity and Electromagnetic Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASEMD.2009.5306625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将支持向量机优化的粒子群算法应用于电力项目投资风险评估。将粒子群优化算法(PSO)与支持向量机(SVM)相结合,建立了一种用于电气设备评估的混合智能系统。首先,我们可以利用粒子群算法获取合适的参数来提高支持向量机的一般识别能力。然后利用这些参数来制定分类规则和训练支持向量机。通过对比BP神经网络和我们的方法的实验,验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the investment risk of electrical project based on particle swarm optimization with support vector machine optimized
In this paper, we use Particle Swarm Optimization with Support Vector Machine Optimized to evaluate the Investment risk of electrical project. A hybrid intelligent system is applied to Evaluation of electrical equipment, combining Particle Swarm Optimize Algorithm (PSO) and Support Vector Machines (SVM). At first, we can make use of PSO obtaining appropriate parameters in order to improve the general recognizing ability of SVM. And then, these parameters are used to develop classification rules and train SVM. The effectiveness of our methodology was verified by experiments comparing BP neural networks with our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信