互联和自动驾驶电动汽车的节能和电池soc感知协调控制

Shaopan Guo, Xiangyu Meng, M. Farasat
{"title":"互联和自动驾驶电动汽车的节能和电池soc感知协调控制","authors":"Shaopan Guo, Xiangyu Meng, M. Farasat","doi":"10.23919/ACC53348.2022.9867292","DOIUrl":null,"url":null,"abstract":"A longitudinal control of autonomous electric vehicle platoons is proposed for improved energy efficiency and battery management. The proposed control scheme consists of two phases: the resequencing phase and the platooning phase. The introduction of the resequencing phase overcomes the issue that the leader vehicle’s battery charge diminishes excessively fast in the traditional platoon control schemes, where the platoon is fixed, thereby extending the driving distance per charge cycle. A Monte Carlo reinforcement learning approach is used to find the optimal sequence of all vehicles. The platooning control is realized by a multi-agent formation control algorithm.","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficient and Battery SOC-aware Coordinated Control of Connected and Autonomous Electric Vehicles\",\"authors\":\"Shaopan Guo, Xiangyu Meng, M. Farasat\",\"doi\":\"10.23919/ACC53348.2022.9867292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A longitudinal control of autonomous electric vehicle platoons is proposed for improved energy efficiency and battery management. The proposed control scheme consists of two phases: the resequencing phase and the platooning phase. The introduction of the resequencing phase overcomes the issue that the leader vehicle’s battery charge diminishes excessively fast in the traditional platoon control schemes, where the platoon is fixed, thereby extending the driving distance per charge cycle. A Monte Carlo reinforcement learning approach is used to find the optimal sequence of all vehicles. The platooning control is realized by a multi-agent formation control algorithm.\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种自动驾驶电动汽车队列的纵向控制方法,以提高车辆的能源效率和电池管理。所提出的控制方案包括两个阶段:重排序阶段和排队阶段。重排序阶段的引入,克服了传统队列控制方案中队列固定时先导车辆电池电量消耗过快的问题,从而延长了每次充电周期的行驶距离。采用蒙特卡罗强化学习方法寻找所有车辆的最优序列。采用多智能体编队控制算法实现队列控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficient and Battery SOC-aware Coordinated Control of Connected and Autonomous Electric Vehicles
A longitudinal control of autonomous electric vehicle platoons is proposed for improved energy efficiency and battery management. The proposed control scheme consists of two phases: the resequencing phase and the platooning phase. The introduction of the resequencing phase overcomes the issue that the leader vehicle’s battery charge diminishes excessively fast in the traditional platoon control schemes, where the platoon is fixed, thereby extending the driving distance per charge cycle. A Monte Carlo reinforcement learning approach is used to find the optimal sequence of all vehicles. The platooning control is realized by a multi-agent formation control algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信