用于抑制干扰的irs辅助多小区毫米波通信系统

Yaxin Song, Shaoyi Xu, Yuanjie Wang
{"title":"用于抑制干扰的irs辅助多小区毫米波通信系统","authors":"Yaxin Song, Shaoyi Xu, Yuanjie Wang","doi":"10.1109/ICCWorkshops53468.2022.9882145","DOIUrl":null,"url":null,"abstract":"Intelligent reflecting surface (IRS) has recently been envisioned as a cost-effective solution to enhance the received signal power of the desired user and to suppress interference of the unintended user. In this paper, we investigate the IRS-aided multi-cell millimeter wave (mmWave) communication system for suppressing inter-cell interference (ICI) to assist the downlink transmission of cell-edge users. We aim for maximizing the minimum weighted signal-to-interference-plus-noise ratio (SINR) through jointly optimizing the active beamforming vectors of mmWave base stations (MBSs), the phase shifts of the IRS, and the location of the IRS in the case of imperfect CSI. To tackle this non-convex problem, we propose a majorization-minimization (MM)-based beamforming algorithm, in which three sets of variables can be updated alternately. The proposed algorithm is also extended to multi-IRS-aided multi-cell mmWave scenarios. The simulation results show the advantages in terms of the SINR of cell-edge users after introducing the IRS to mitigate the ICI.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IRS-aided Multi-cell mmWave Communication Systems for Suppressing Interference\",\"authors\":\"Yaxin Song, Shaoyi Xu, Yuanjie Wang\",\"doi\":\"10.1109/ICCWorkshops53468.2022.9882145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent reflecting surface (IRS) has recently been envisioned as a cost-effective solution to enhance the received signal power of the desired user and to suppress interference of the unintended user. In this paper, we investigate the IRS-aided multi-cell millimeter wave (mmWave) communication system for suppressing inter-cell interference (ICI) to assist the downlink transmission of cell-edge users. We aim for maximizing the minimum weighted signal-to-interference-plus-noise ratio (SINR) through jointly optimizing the active beamforming vectors of mmWave base stations (MBSs), the phase shifts of the IRS, and the location of the IRS in the case of imperfect CSI. To tackle this non-convex problem, we propose a majorization-minimization (MM)-based beamforming algorithm, in which three sets of variables can be updated alternately. The proposed algorithm is also extended to multi-IRS-aided multi-cell mmWave scenarios. The simulation results show the advantages in terms of the SINR of cell-edge users after introducing the IRS to mitigate the ICI.\",\"PeriodicalId\":102261,\"journal\":{\"name\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Communications Workshops (ICC Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWorkshops53468.2022.9882145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops53468.2022.9882145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能反射面(IRS)最近被设想为一种经济有效的解决方案,以增强期望用户的接收信号功率并抑制非预期用户的干扰。在本文中,我们研究了irs辅助的多小区毫米波(mmWave)通信系统,用于抑制小区间干扰(ICI),以协助小区边缘用户的下行传输。我们的目标是通过共同优化毫米波基站(MBSs)的有源波束形成矢量、IRS的相移以及在不完全CSI情况下IRS的位置来最大化最小加权信噪比(SINR)。为了解决这个非凸问题,我们提出了一种基于最大化最小化(MM)的波束形成算法,其中三组变量可以交替更新。该算法还可扩展到多irs辅助的多小区毫米波场景。仿真结果表明,在蜂窝边缘用户的信噪比方面,引入IRS来缓解ICI的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IRS-aided Multi-cell mmWave Communication Systems for Suppressing Interference
Intelligent reflecting surface (IRS) has recently been envisioned as a cost-effective solution to enhance the received signal power of the desired user and to suppress interference of the unintended user. In this paper, we investigate the IRS-aided multi-cell millimeter wave (mmWave) communication system for suppressing inter-cell interference (ICI) to assist the downlink transmission of cell-edge users. We aim for maximizing the minimum weighted signal-to-interference-plus-noise ratio (SINR) through jointly optimizing the active beamforming vectors of mmWave base stations (MBSs), the phase shifts of the IRS, and the location of the IRS in the case of imperfect CSI. To tackle this non-convex problem, we propose a majorization-minimization (MM)-based beamforming algorithm, in which three sets of variables can be updated alternately. The proposed algorithm is also extended to multi-IRS-aided multi-cell mmWave scenarios. The simulation results show the advantages in terms of the SINR of cell-edge users after introducing the IRS to mitigate the ICI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信