能源管理系统对当地能源效率的好处,一个农业案例研究

Alexandre Rio, Y. Maurel, Olivier Barais, Yoran Bugni
{"title":"能源管理系统对当地能源效率的好处,一个农业案例研究","authors":"Alexandre Rio, Y. Maurel, Olivier Barais, Yoran Bugni","doi":"10.1109/SmartGridComm.2019.8909742","DOIUrl":null,"url":null,"abstract":"Energy efficiency is a concern impacting both ecology and economy. Most approaches aiming at reducing the energy impact of a site focus on only one specific aspect of the ecosystem: appliances, local generation or energy storage.A trade-off analysis of the many factors to consider is challenging and must be supported by tools. This paper proposes a Model-Driven Engineering approach mixing all these concerns into one comprehensive model. This model can then be used to size either local production means, either energy storage capacity and also help to analyze differences between technologies. It also enables process optimization by modeling activity variability: it takes the weather into account to give regular feedback to the end user. This approach is illustrated by simulation using real consumption and local production data from a representative agricultural site. We show its use by: sizing solar panels, by choosing between battery technologies and specification and by evaluating different demand response scenarios while examining the economic sustainability of these choices.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Benefits of Energy Management Systems on local energy efficiency, an agricultural case study\",\"authors\":\"Alexandre Rio, Y. Maurel, Olivier Barais, Yoran Bugni\",\"doi\":\"10.1109/SmartGridComm.2019.8909742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency is a concern impacting both ecology and economy. Most approaches aiming at reducing the energy impact of a site focus on only one specific aspect of the ecosystem: appliances, local generation or energy storage.A trade-off analysis of the many factors to consider is challenging and must be supported by tools. This paper proposes a Model-Driven Engineering approach mixing all these concerns into one comprehensive model. This model can then be used to size either local production means, either energy storage capacity and also help to analyze differences between technologies. It also enables process optimization by modeling activity variability: it takes the weather into account to give regular feedback to the end user. This approach is illustrated by simulation using real consumption and local production data from a representative agricultural site. We show its use by: sizing solar panels, by choosing between battery technologies and specification and by evaluating different demand response scenarios while examining the economic sustainability of these choices.\",\"PeriodicalId\":377150,\"journal\":{\"name\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2019.8909742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

能源效率是一个影响生态和经济的问题。大多数旨在减少场地能源影响的方法只关注生态系统的一个特定方面:电器、本地发电或能源储存。对要考虑的许多因素进行权衡分析是具有挑战性的,并且必须得到工具的支持。本文提出了一种模型驱动工程方法,将所有这些关注点混合到一个综合模型中。然后,这个模型可以用来衡量当地的生产方式、能源储存能力,也有助于分析技术之间的差异。它还通过对活动可变性进行建模来实现流程优化:它将天气考虑在内,向最终用户提供定期反馈。这种方法是通过模拟使用真实消费和当地生产数据从一个有代表性的农业现场说明。我们通过太阳能电池板的尺寸,电池技术和规格之间的选择,以及评估不同的需求响应情景,同时检查这些选择的经济可持续性来展示其使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benefits of Energy Management Systems on local energy efficiency, an agricultural case study
Energy efficiency is a concern impacting both ecology and economy. Most approaches aiming at reducing the energy impact of a site focus on only one specific aspect of the ecosystem: appliances, local generation or energy storage.A trade-off analysis of the many factors to consider is challenging and must be supported by tools. This paper proposes a Model-Driven Engineering approach mixing all these concerns into one comprehensive model. This model can then be used to size either local production means, either energy storage capacity and also help to analyze differences between technologies. It also enables process optimization by modeling activity variability: it takes the weather into account to give regular feedback to the end user. This approach is illustrated by simulation using real consumption and local production data from a representative agricultural site. We show its use by: sizing solar panels, by choosing between battery technologies and specification and by evaluating different demand response scenarios while examining the economic sustainability of these choices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信