{"title":"空间自同态的k理论","authors":"Filipp Levikov","doi":"10.4310/HHA.2016.V18.N1.A17","DOIUrl":null,"url":null,"abstract":"We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The K-theory of endomorphisms of spaces\",\"authors\":\"Filipp Levikov\",\"doi\":\"10.4310/HHA.2016.V18.N1.A17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\\\\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2016.V18.N1.A17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2016.V18.N1.A17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.