空间自同态的k理论

Filipp Levikov
{"title":"空间自同态的k理论","authors":"Filipp Levikov","doi":"10.4310/HHA.2016.V18.N1.A17","DOIUrl":null,"url":null,"abstract":"We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The K-theory of endomorphisms of spaces\",\"authors\":\"Filipp Levikov\",\"doi\":\"10.4310/HHA.2016.V18.N1.A17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\\\\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2016.V18.N1.A17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2016.V18.N1.A17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了与代数K -理论基本定理类似的Grayson定理的一个非线性版本,并利用X -空间上n-空间的范畴的某一局部化的约化K -理论,确定了X -空间上自同态范畴的K -理论。特别地,我们推广了Klein和Williams用幂零自同态的K -理论描述A -理论的零项的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The K-theory of endomorphisms of spaces
We prove a non-linear version of a theorem of Grayson which is an analogue of the Fundamental Theorem of Algebraic $K$-theory and identify the $K$-theory of the endomorphism category over a space $X$ in terms of reduced $K$-theory of a certain localisation of the category of $\NN$-spaces over $X$. In particular we generalise the result of Klein and Williams describing the nil-terms of $A$-theory in terms of $K$-theory of nilpotent endomorphisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信