恒K环境下裂纹扩展研究的优化试样

R. Cammino, M. Gosz, S. Mostovoy
{"title":"恒K环境下裂纹扩展研究的优化试样","authors":"R. Cammino, M. Gosz, S. Mostovoy","doi":"10.1115/imece2000-1250","DOIUrl":null,"url":null,"abstract":"\n Techniques in computational fracture mechanics were employed to optimize the performance of a fracture specimen for use in crack growth studies in a constant K environment. The finite element method was used to model the specimen. In the numerical calculations, the mode I stress intensity factors were obtained using a domain integral approach. The specimen was optimized by systematically changing its geometry and performing finite element calculations in an iterative fashion. The procedure was carried out until a variation in the mode I stress intensity factor of less than three percent within the desired range of crack propagation was achieved.","PeriodicalId":270413,"journal":{"name":"Recent Advances in Solids and Structures","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Specimen for Crack Growth Studies in a Constant K Environment\",\"authors\":\"R. Cammino, M. Gosz, S. Mostovoy\",\"doi\":\"10.1115/imece2000-1250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Techniques in computational fracture mechanics were employed to optimize the performance of a fracture specimen for use in crack growth studies in a constant K environment. The finite element method was used to model the specimen. In the numerical calculations, the mode I stress intensity factors were obtained using a domain integral approach. The specimen was optimized by systematically changing its geometry and performing finite element calculations in an iterative fashion. The procedure was carried out until a variation in the mode I stress intensity factor of less than three percent within the desired range of crack propagation was achieved.\",\"PeriodicalId\":270413,\"journal\":{\"name\":\"Recent Advances in Solids and Structures\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算断裂力学的技术,以优化断裂试样的性能,用于裂纹扩展研究在恒定的K环境。采用有限元法对试件进行建模。在数值计算中,采用域积分法得到了I型应力强度因子。通过系统地改变其几何形状并以迭代的方式进行有限元计算,对试样进行了优化。该过程一直进行,直到在裂纹扩展的期望范围内,I型应力强度因子的变化小于3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Specimen for Crack Growth Studies in a Constant K Environment
Techniques in computational fracture mechanics were employed to optimize the performance of a fracture specimen for use in crack growth studies in a constant K environment. The finite element method was used to model the specimen. In the numerical calculations, the mode I stress intensity factors were obtained using a domain integral approach. The specimen was optimized by systematically changing its geometry and performing finite element calculations in an iterative fashion. The procedure was carried out until a variation in the mode I stress intensity factor of less than three percent within the desired range of crack propagation was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信