流固耦合问题分区迭代非线性算法的实用性能

S. Minami, S. Yoshimura
{"title":"流固耦合问题分区迭代非线性算法的实用性能","authors":"S. Minami, S. Yoshimura","doi":"10.1299/JCST.3.396","DOIUrl":null,"url":null,"abstract":"Recently, tightly coupled partitioned iterative methods have drawn a great deal of attentions due to easy implementation and encapsulation features, and several nonlinear algorithms have been proposed so far. However, their practical performances have not been well understood yet. This paper describes the intensive parametric study on convergence and stability performances of four nonlinear algorithms and their relaxed variations for partitioned iterative methods of steady / unsteady fluid-structure interaction (FSI) problems. Here we choose three typical FSI problems as test problems, i.e. (1) Collapsible channel as a steady problem, (2) Cavity with flexible bottom membrane and (3) Channel with flexible wall as unsteady problems. Efficiency and robustness dependency of those nonlinear algorithms on physical parameters such as degree of nonlinearity, added mass effect, time step, and on control parameters peculiar to each algorithm are clarified. Through those tests, we demonstrate that Broyden method is the fastest algorithm for easy FSI problems such as weakly coupling and Line Search method has robustness even for difficult FSI problems such as strongly coupling.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practical Performances of Non-linear Algorithms for Partitioned Iterative Method of Fluid-Structure Interaction Problems\",\"authors\":\"S. Minami, S. Yoshimura\",\"doi\":\"10.1299/JCST.3.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, tightly coupled partitioned iterative methods have drawn a great deal of attentions due to easy implementation and encapsulation features, and several nonlinear algorithms have been proposed so far. However, their practical performances have not been well understood yet. This paper describes the intensive parametric study on convergence and stability performances of four nonlinear algorithms and their relaxed variations for partitioned iterative methods of steady / unsteady fluid-structure interaction (FSI) problems. Here we choose three typical FSI problems as test problems, i.e. (1) Collapsible channel as a steady problem, (2) Cavity with flexible bottom membrane and (3) Channel with flexible wall as unsteady problems. Efficiency and robustness dependency of those nonlinear algorithms on physical parameters such as degree of nonlinearity, added mass effect, time step, and on control parameters peculiar to each algorithm are clarified. Through those tests, we demonstrate that Broyden method is the fastest algorithm for easy FSI problems such as weakly coupling and Line Search method has robustness even for difficult FSI problems such as strongly coupling.\",\"PeriodicalId\":196913,\"journal\":{\"name\":\"Journal of Computational Science and Technology\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JCST.3.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.3.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,紧耦合分割迭代方法因其易于实现和封装的特点而备受关注,目前已经提出了几种非线性算法。然而,它们的实际性能还没有被很好地理解。本文对定/非定常流固耦合(FSI)问题的四种非线性算法的收敛性和稳定性及其松弛变化进行了深入的参数化研究。本文选取三个典型的流固耦合问题作为试验问题,即(1)可折叠通道作为稳态问题,(2)具有柔性底膜的空腔和(3)具有柔性壁的通道作为非稳态问题。阐明了这些非线性算法对物理参数(如非线性程度、附加质量效应、时间步长)和每种算法特有的控制参数的效率和鲁棒性依赖性。通过这些测试,我们证明了Broyden方法对于弱耦合等简单的FSI问题是最快的算法,而Line Search方法即使对于强耦合等困难的FSI问题也具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Performances of Non-linear Algorithms for Partitioned Iterative Method of Fluid-Structure Interaction Problems
Recently, tightly coupled partitioned iterative methods have drawn a great deal of attentions due to easy implementation and encapsulation features, and several nonlinear algorithms have been proposed so far. However, their practical performances have not been well understood yet. This paper describes the intensive parametric study on convergence and stability performances of four nonlinear algorithms and their relaxed variations for partitioned iterative methods of steady / unsteady fluid-structure interaction (FSI) problems. Here we choose three typical FSI problems as test problems, i.e. (1) Collapsible channel as a steady problem, (2) Cavity with flexible bottom membrane and (3) Channel with flexible wall as unsteady problems. Efficiency and robustness dependency of those nonlinear algorithms on physical parameters such as degree of nonlinearity, added mass effect, time step, and on control parameters peculiar to each algorithm are clarified. Through those tests, we demonstrate that Broyden method is the fastest algorithm for easy FSI problems such as weakly coupling and Line Search method has robustness even for difficult FSI problems such as strongly coupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信