流感相关突变的网络分析

Uday Yallapragada, I. Vaisman
{"title":"流感相关突变的网络分析","authors":"Uday Yallapragada, I. Vaisman","doi":"10.1145/3107411.3108237","DOIUrl":null,"url":null,"abstract":"Influenza A Virus (IAV) is remarkably adept at surviving in human populations. IAV thrives even among populations with wide spread access to vaccines and anti-viral drugs, and continues to be a major cause of morbidity and mortality. Correlated mutations are an important factor in IAV's evolution and are critical for host adaptation and pathogenicity. Large sets of publicly available sequences of IAV combined with its rapid and complex evolutionary dynamics present interesting opportunities and unique challenges to analyze correlated mutations in influenza proteomes. In this work, we performed a comprehensive analysis of correlated mutations in IAV using a network theory approach where residues in each protein act as nodes in the graph and edges in the graph are created based on inter-residue correlated mutations. Our approach used 'maximal information coefficient' (MIC) to compute correlations between residues and the edges connect nodes if their MIC exceeds a threshold. We created a modular and robust pipeline and applied it to multiple datasets of H1N1, H3N2, H5 and H7N9 subtypes. We studied structural dynamics of IAV sub-systems based on topological properties of their networks resulting in several important conclusions. The main finding is that correlated mutation networks in IAV are sub-type and host specific and the differences for various subtypes and hosts are significant. We identified nodes with highest degree along with edges and triplets with strongest weight for each network. To contextualize our results, we performed entropy analysis to gain a global view of sequence variation and computed solvent accessibility profiles to identify statistical differences in correlation profiles between surface and buried residues. To understand the extent of co-variation between the 10 proteins in IAV sequences, we created visualizations of protein correlation graphs where the proteins acts as nodes and the strength of connections between the nodes depends on the number of correlated mutations between residues of connected proteins. A web application and visualization tools to explore the results and search for correlated mutations were developed.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Analysis of Correlated Mutations in Influenza\",\"authors\":\"Uday Yallapragada, I. Vaisman\",\"doi\":\"10.1145/3107411.3108237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influenza A Virus (IAV) is remarkably adept at surviving in human populations. IAV thrives even among populations with wide spread access to vaccines and anti-viral drugs, and continues to be a major cause of morbidity and mortality. Correlated mutations are an important factor in IAV's evolution and are critical for host adaptation and pathogenicity. Large sets of publicly available sequences of IAV combined with its rapid and complex evolutionary dynamics present interesting opportunities and unique challenges to analyze correlated mutations in influenza proteomes. In this work, we performed a comprehensive analysis of correlated mutations in IAV using a network theory approach where residues in each protein act as nodes in the graph and edges in the graph are created based on inter-residue correlated mutations. Our approach used 'maximal information coefficient' (MIC) to compute correlations between residues and the edges connect nodes if their MIC exceeds a threshold. We created a modular and robust pipeline and applied it to multiple datasets of H1N1, H3N2, H5 and H7N9 subtypes. We studied structural dynamics of IAV sub-systems based on topological properties of their networks resulting in several important conclusions. The main finding is that correlated mutation networks in IAV are sub-type and host specific and the differences for various subtypes and hosts are significant. We identified nodes with highest degree along with edges and triplets with strongest weight for each network. To contextualize our results, we performed entropy analysis to gain a global view of sequence variation and computed solvent accessibility profiles to identify statistical differences in correlation profiles between surface and buried residues. To understand the extent of co-variation between the 10 proteins in IAV sequences, we created visualizations of protein correlation graphs where the proteins acts as nodes and the strength of connections between the nodes depends on the number of correlated mutations between residues of connected proteins. A web application and visualization tools to explore the results and search for correlated mutations were developed.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲型流感病毒(IAV)非常善于在人群中生存。即使在广泛获得疫苗和抗病毒药物的人群中,禽流感也很猖獗,并继续成为发病率和死亡率的一个主要原因。相关突变是IAV进化的重要因素,对宿主适应和致病性至关重要。大量可公开获得的流感病毒序列及其快速而复杂的进化动力学为分析流感蛋白质组的相关突变提供了有趣的机会和独特的挑战。在这项工作中,我们使用网络理论方法对IAV中的相关突变进行了全面分析,其中每个蛋白质中的残基作为图中的节点,图中的边是基于残基间相关突变创建的。我们的方法使用“最大信息系数”(MIC)来计算残基和连接节点的边之间的相关性,如果它们的MIC超过阈值。我们创建了一个模块化和强大的管道,并将其应用于H1N1, H3N2, H5和H7N9亚型的多个数据集。我们研究了基于网络拓扑特性的IAV子系统的结构动力学,得出了几个重要的结论。主要发现是IAV的相关突变网络具有亚型和宿主特异性,不同亚型和宿主之间差异显著。我们为每个网络识别度最高的节点以及权重最强的边和三联体。为了将我们的结果联系起来,我们进行了熵分析,以获得序列变化的全局视图,并计算了溶剂可及性曲线,以确定地表和掩埋残留物之间相关曲线的统计差异。为了了解IAV序列中10种蛋白质之间的共变异程度,我们创建了蛋白质相关图的可视化,其中蛋白质作为节点,节点之间的连接强度取决于连接蛋白质残基之间相关突变的数量。开发了一个web应用程序和可视化工具来探索结果和搜索相关突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Analysis of Correlated Mutations in Influenza
Influenza A Virus (IAV) is remarkably adept at surviving in human populations. IAV thrives even among populations with wide spread access to vaccines and anti-viral drugs, and continues to be a major cause of morbidity and mortality. Correlated mutations are an important factor in IAV's evolution and are critical for host adaptation and pathogenicity. Large sets of publicly available sequences of IAV combined with its rapid and complex evolutionary dynamics present interesting opportunities and unique challenges to analyze correlated mutations in influenza proteomes. In this work, we performed a comprehensive analysis of correlated mutations in IAV using a network theory approach where residues in each protein act as nodes in the graph and edges in the graph are created based on inter-residue correlated mutations. Our approach used 'maximal information coefficient' (MIC) to compute correlations between residues and the edges connect nodes if their MIC exceeds a threshold. We created a modular and robust pipeline and applied it to multiple datasets of H1N1, H3N2, H5 and H7N9 subtypes. We studied structural dynamics of IAV sub-systems based on topological properties of their networks resulting in several important conclusions. The main finding is that correlated mutation networks in IAV are sub-type and host specific and the differences for various subtypes and hosts are significant. We identified nodes with highest degree along with edges and triplets with strongest weight for each network. To contextualize our results, we performed entropy analysis to gain a global view of sequence variation and computed solvent accessibility profiles to identify statistical differences in correlation profiles between surface and buried residues. To understand the extent of co-variation between the 10 proteins in IAV sequences, we created visualizations of protein correlation graphs where the proteins acts as nodes and the strength of connections between the nodes depends on the number of correlated mutations between residues of connected proteins. A web application and visualization tools to explore the results and search for correlated mutations were developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信