三维触觉压阻力传感器的新材料概念

A. Jordan, S. Buttgenbach
{"title":"三维触觉压阻力传感器的新材料概念","authors":"A. Jordan, S. Buttgenbach","doi":"10.1109/3M-NANO.2012.6472942","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a new material concept to develop highly sensitive three-dimensional tactile force sensors. Conventional three-dimensional force sensors are based on silicon with integrated diffused silicon piezoresistors. Micromechanical force sensors using a soft material instead, e. g. SU-8 resist, would be more sensitive for static deflection measurements. As a characteristic factor for the sensitivity, the ratio of the gauge factor k to the Young's modulus E is presented for different sensor types. Beside silicon, especially gold, carbon black particles, and diamond-like carbon is taken into consideration as piezoresistive material. In addition four different SU-8 sensor prototypes are mechanically characterized with regard to their bending stiffness, probing forces at different deflections, and breaking points.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new material concept for three-dimensional tactile piezoresistive force sensors\",\"authors\":\"A. Jordan, S. Buttgenbach\",\"doi\":\"10.1109/3M-NANO.2012.6472942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present a new material concept to develop highly sensitive three-dimensional tactile force sensors. Conventional three-dimensional force sensors are based on silicon with integrated diffused silicon piezoresistors. Micromechanical force sensors using a soft material instead, e. g. SU-8 resist, would be more sensitive for static deflection measurements. As a characteristic factor for the sensitivity, the ratio of the gauge factor k to the Young's modulus E is presented for different sensor types. Beside silicon, especially gold, carbon black particles, and diamond-like carbon is taken into consideration as piezoresistive material. In addition four different SU-8 sensor prototypes are mechanically characterized with regard to their bending stiffness, probing forces at different deflections, and breaking points.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是提出一种新的材料概念来开发高灵敏度的三维触觉力传感器。传统的三维力传感器是基于硅和集成扩散硅压敏电阻。使用软材料的微机械力传感器,例如SU-8电阻,将对静态挠度测量更敏感。作为灵敏度的特征因子,给出了不同类型传感器的测量因子k与杨氏模量E的比值。压阻材料除硅外,特别是金、炭黑颗粒和类金刚石碳也被认为是压阻材料。此外,四种不同的SU-8传感器原型根据其弯曲刚度、不同挠度下的探测力和断裂点进行了机械表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new material concept for three-dimensional tactile piezoresistive force sensors
The purpose of this paper is to present a new material concept to develop highly sensitive three-dimensional tactile force sensors. Conventional three-dimensional force sensors are based on silicon with integrated diffused silicon piezoresistors. Micromechanical force sensors using a soft material instead, e. g. SU-8 resist, would be more sensitive for static deflection measurements. As a characteristic factor for the sensitivity, the ratio of the gauge factor k to the Young's modulus E is presented for different sensor types. Beside silicon, especially gold, carbon black particles, and diamond-like carbon is taken into consideration as piezoresistive material. In addition four different SU-8 sensor prototypes are mechanically characterized with regard to their bending stiffness, probing forces at different deflections, and breaking points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信