{"title":"丰富地理空间数据的相似度搜索","authors":"Kostas Patroumpas, Dimitrios Skoutas","doi":"10.1145/3403896.3403967","DOIUrl":null,"url":null,"abstract":"Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.","PeriodicalId":433637,"journal":{"name":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Similarity search over enriched geospatial data\",\"authors\":\"Kostas Patroumpas, Dimitrios Skoutas\",\"doi\":\"10.1145/3403896.3403967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.\",\"PeriodicalId\":433637,\"journal\":{\"name\":\"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3403896.3403967\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3403896.3403967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enriched geospatial data refers to geospatial entities associated with additional information from various sources, such as textual, numerical or temporal. Exploring such data involves multi-criteria search and ranking across several heterogeneous attributes. In this paper, we model this task as a rank aggregation problem. Our method automatically scales similarity scores across diverse attributes without relying on user-specified parameters. It also allows to retrieve and combine information from multiple sources during query execution. We evaluate our approach using a large real-world dataset of enriched geospatial entities representing news articles.