扭曲的布林-汤普森组

James M. Belk, Matthew C. B. Zaremsky
{"title":"扭曲的布林-汤普森组","authors":"James M. Belk, Matthew C. B. Zaremsky","doi":"10.2140/gt.2022.26.1189","DOIUrl":null,"url":null,"abstract":"We construct a family of infinite simple groups that we call \\emph{twisted Brin-Thompson groups}, generalizing Brin's higher-dimensional Thompson groups $sV$ ($s\\in\\mathbb{N}$). We use twisted Brin-Thompson groups to prove a variety of results regarding simple groups. For example, we prove that every finitely generated group embeds quasi-isometrically as a subgroup of a two-generated simple group, strengthening a result of Bridson. We also produce examples of simple groups that contain every $sV$ and hence every right-angled Artin group, including examples of type $\\textrm{F}_\\infty$ and a family of examples of type $\\textrm{F}_{n-1}$ but not of type $\\textrm{F}_n$, for arbitrary $n\\in\\mathbb{N}$. This provides the second known infinite family of simple groups distinguished by their finiteness properties.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Twisted Brin–Thompson groups\",\"authors\":\"James M. Belk, Matthew C. B. Zaremsky\",\"doi\":\"10.2140/gt.2022.26.1189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a family of infinite simple groups that we call \\\\emph{twisted Brin-Thompson groups}, generalizing Brin's higher-dimensional Thompson groups $sV$ ($s\\\\in\\\\mathbb{N}$). We use twisted Brin-Thompson groups to prove a variety of results regarding simple groups. For example, we prove that every finitely generated group embeds quasi-isometrically as a subgroup of a two-generated simple group, strengthening a result of Bridson. We also produce examples of simple groups that contain every $sV$ and hence every right-angled Artin group, including examples of type $\\\\textrm{F}_\\\\infty$ and a family of examples of type $\\\\textrm{F}_{n-1}$ but not of type $\\\\textrm{F}_n$, for arbitrary $n\\\\in\\\\mathbb{N}$. This provides the second known infinite family of simple groups distinguished by their finiteness properties.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们构造了一个无限单群族,我们称之为\emph{扭曲的布林-汤普森群},推广了布林的高维汤普森群$sV$ ($s\in\mathbb{N}$)。我们利用扭曲的Brin-Thompson群证明了关于单群的各种结果。例如,我们证明了每一个有限生成群作为一个二生成单群的子群是拟等距嵌入的,从而加强了Bridson的结果。我们还生成了包含所有$sV$和所有直角Artin群的简单群的示例,包括类型为$\textrm{F}_\infty$的示例和类型为$\textrm{F}_{n-1}$但不为$\textrm{F}_n$的一系列示例,用于任意$n\in\mathbb{N}$。这提供了第二个已知的无限单群族,其特征是有限性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted Brin–Thompson groups
We construct a family of infinite simple groups that we call \emph{twisted Brin-Thompson groups}, generalizing Brin's higher-dimensional Thompson groups $sV$ ($s\in\mathbb{N}$). We use twisted Brin-Thompson groups to prove a variety of results regarding simple groups. For example, we prove that every finitely generated group embeds quasi-isometrically as a subgroup of a two-generated simple group, strengthening a result of Bridson. We also produce examples of simple groups that contain every $sV$ and hence every right-angled Artin group, including examples of type $\textrm{F}_\infty$ and a family of examples of type $\textrm{F}_{n-1}$ but not of type $\textrm{F}_n$, for arbitrary $n\in\mathbb{N}$. This provides the second known infinite family of simple groups distinguished by their finiteness properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信