一种高隔离的宽带毫米波波导分压器

Hua Zhang, Deng Yun Shao, Yun-liang Shao
{"title":"一种高隔离的宽带毫米波波导分压器","authors":"Hua Zhang, Deng Yun Shao, Yun-liang Shao","doi":"10.11648/J.AJPA.20190704.12","DOIUrl":null,"url":null,"abstract":"In this paper, an E-plane stepped-impedance transformer and Y-junction bifurcation are used to form a waveguide power divider with ceramic substrate loaded with thin film resistors. This structure is realized high isolation in V-band by inserting a ceramic substrate at the H-plane center of the Y-junction waveguide bifurcation, both sides of which loaded with thin film resistors. The waveguide power divider was fabricated with aluminium-50% silicon, and has characteristics of light weight, lower coefficient of thermal expansion, good thermal conductivity, and its properties are more compatible with those of ceramic substrate. The principle and design procedure are described in detail. A V-band E-plane waveguide power divider is designed, fabricated, and measured. The measured results show that insertion loss is less than 0.4dB in the frequency range of 50~60GHz, with typical isolation levels of 25dB between the two output ports and amplitude imbalance less than 0.19dB, phase imbalance less than 1.4°. The measured and simulated results show good amplitude, phase, and isolation characteristics validating the proposed power divider.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Broadband Millimeter-Wave Waveguide Power Divider with High Isolation\",\"authors\":\"Hua Zhang, Deng Yun Shao, Yun-liang Shao\",\"doi\":\"10.11648/J.AJPA.20190704.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an E-plane stepped-impedance transformer and Y-junction bifurcation are used to form a waveguide power divider with ceramic substrate loaded with thin film resistors. This structure is realized high isolation in V-band by inserting a ceramic substrate at the H-plane center of the Y-junction waveguide bifurcation, both sides of which loaded with thin film resistors. The waveguide power divider was fabricated with aluminium-50% silicon, and has characteristics of light weight, lower coefficient of thermal expansion, good thermal conductivity, and its properties are more compatible with those of ceramic substrate. The principle and design procedure are described in detail. A V-band E-plane waveguide power divider is designed, fabricated, and measured. The measured results show that insertion loss is less than 0.4dB in the frequency range of 50~60GHz, with typical isolation levels of 25dB between the two output ports and amplitude imbalance less than 0.19dB, phase imbalance less than 1.4°. The measured and simulated results show good amplitude, phase, and isolation characteristics validating the proposed power divider.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190704.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190704.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用e面阶跃阻抗变压器和y结分岔,在陶瓷衬底上加载薄膜电阻,形成波导功率分压器。该结构通过在y结波导分叉的h面中心插入陶瓷衬底,两侧加载薄膜电阻,实现了v波段的高隔离。该波导功率分压器采用铝-50%硅材料制成,具有重量轻、热膨胀系数低、导热性好、性能与陶瓷衬底更相容等特点。详细介绍了该系统的工作原理和设计过程。设计、制作并测量了v波段e平面波导分压器。测量结果表明,在50~60GHz频率范围内,插入损耗小于0.4dB,两个输出端口之间的典型隔离电平为25dB,幅值不平衡小于0.19dB,相位不平衡小于1.4°。测量和仿真结果表明,该功率分压器具有良好的幅度、相位和隔离特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Broadband Millimeter-Wave Waveguide Power Divider with High Isolation
In this paper, an E-plane stepped-impedance transformer and Y-junction bifurcation are used to form a waveguide power divider with ceramic substrate loaded with thin film resistors. This structure is realized high isolation in V-band by inserting a ceramic substrate at the H-plane center of the Y-junction waveguide bifurcation, both sides of which loaded with thin film resistors. The waveguide power divider was fabricated with aluminium-50% silicon, and has characteristics of light weight, lower coefficient of thermal expansion, good thermal conductivity, and its properties are more compatible with those of ceramic substrate. The principle and design procedure are described in detail. A V-band E-plane waveguide power divider is designed, fabricated, and measured. The measured results show that insertion loss is less than 0.4dB in the frequency range of 50~60GHz, with typical isolation levels of 25dB between the two output ports and amplitude imbalance less than 0.19dB, phase imbalance less than 1.4°. The measured and simulated results show good amplitude, phase, and isolation characteristics validating the proposed power divider.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信