神经结构分割的下降方差图

G. Stetten, Cindy Wong, Vikas Shivaprabhu, Ada Zhang, S. Horvath, Jihang Wang, J. Galeotti, V. Gorantla, H. Aizenstein
{"title":"神经结构分割的下降方差图","authors":"G. Stetten, Cindy Wong, Vikas Shivaprabhu, Ada Zhang, S. Horvath, Jihang Wang, J. Galeotti, V. Gorantla, H. Aizenstein","doi":"10.1109/PRNI.2013.52","DOIUrl":null,"url":null,"abstract":"We present a novel and relatively simple method for clustering pixels into homogeneous patches using a directed graph of edges between neighboring pixels. For a 2D image, the mean and variance of image intensity is computed within a circular region centered at each pixel. Each pixel stores its circle's mean and variance, and forms the node in a graph, with possible edges to its 4 immediate neighbors. If at least one of those neighbors has a lower variance than itself, a directed edge is formed, pointing to the neighbor with the lowest variance. Local minima in variance thus form the roots of disjoint trees, representing patches of relative homogeneity. The method works in n-dimensions and requires only a single parameter: the radius of the circular (spherical, or hyper spherical) regions used to compute variance around each pixel. Setting the intensity of all pixels within a given patch to the mean at its root pixel significantly reduces image noise while preserving anatomical structure, including location of boundaries. The patches may themselves be clustered using techniques that would be computationally too expensive if applied to the raw pixels. We demonstrate such clustering to identify fascicles in the median nerve in high-resolution 2D ultrasound images, as well as white matter hyper intensities in 3D magnetic resonance images.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Descending Variance Graphs for Segmenting Neurological Structures\",\"authors\":\"G. Stetten, Cindy Wong, Vikas Shivaprabhu, Ada Zhang, S. Horvath, Jihang Wang, J. Galeotti, V. Gorantla, H. Aizenstein\",\"doi\":\"10.1109/PRNI.2013.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel and relatively simple method for clustering pixels into homogeneous patches using a directed graph of edges between neighboring pixels. For a 2D image, the mean and variance of image intensity is computed within a circular region centered at each pixel. Each pixel stores its circle's mean and variance, and forms the node in a graph, with possible edges to its 4 immediate neighbors. If at least one of those neighbors has a lower variance than itself, a directed edge is formed, pointing to the neighbor with the lowest variance. Local minima in variance thus form the roots of disjoint trees, representing patches of relative homogeneity. The method works in n-dimensions and requires only a single parameter: the radius of the circular (spherical, or hyper spherical) regions used to compute variance around each pixel. Setting the intensity of all pixels within a given patch to the mean at its root pixel significantly reduces image noise while preserving anatomical structure, including location of boundaries. The patches may themselves be clustered using techniques that would be computationally too expensive if applied to the raw pixels. We demonstrate such clustering to identify fascicles in the median nerve in high-resolution 2D ultrasound images, as well as white matter hyper intensities in 3D magnetic resonance images.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新颖且相对简单的方法,利用相邻像素之间的有向图边缘将像素聚类成均匀的斑块。对于二维图像,在以每个像素为中心的圆形区域内计算图像强度的均值和方差。每个像素存储其圆的均值和方差,并形成图中的节点,其4个相邻节点可能有边。如果这些邻居中至少有一个比自己的方差小,则形成一条有向边,指向方差最小的邻居。因此,局部最小方差形成了不相交树的根,代表了相对均匀性的斑块。该方法适用于n维,只需要一个参数:用于计算每个像素周围方差的圆形(球面或超球面)区域的半径。将给定斑块内所有像素的强度设置为其根像素的平均值,可以显著降低图像噪声,同时保留解剖结构,包括边界的位置。如果应用于原始像素,这些补丁本身可能会使用计算成本过高的技术进行聚类。我们展示了这种聚类来识别高分辨率2D超声图像中的正中神经束,以及3D磁共振图像中的白质超强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Descending Variance Graphs for Segmenting Neurological Structures
We present a novel and relatively simple method for clustering pixels into homogeneous patches using a directed graph of edges between neighboring pixels. For a 2D image, the mean and variance of image intensity is computed within a circular region centered at each pixel. Each pixel stores its circle's mean and variance, and forms the node in a graph, with possible edges to its 4 immediate neighbors. If at least one of those neighbors has a lower variance than itself, a directed edge is formed, pointing to the neighbor with the lowest variance. Local minima in variance thus form the roots of disjoint trees, representing patches of relative homogeneity. The method works in n-dimensions and requires only a single parameter: the radius of the circular (spherical, or hyper spherical) regions used to compute variance around each pixel. Setting the intensity of all pixels within a given patch to the mean at its root pixel significantly reduces image noise while preserving anatomical structure, including location of boundaries. The patches may themselves be clustered using techniques that would be computationally too expensive if applied to the raw pixels. We demonstrate such clustering to identify fascicles in the median nerve in high-resolution 2D ultrasound images, as well as white matter hyper intensities in 3D magnetic resonance images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信