主动旅游推荐的生理条件建模

Rinita Roy, Linus W. Dietz
{"title":"主动旅游推荐的生理条件建模","authors":"Rinita Roy, Linus W. Dietz","doi":"10.1145/3345002.3349289","DOIUrl":null,"url":null,"abstract":"Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to themselves and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution is a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended.","PeriodicalId":153835,"journal":{"name":"Proceedings of the 23rd International Workshop on Personalization and Recommendation on the Web and Beyond","volume":"28 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling Physiological Conditions for Proactive Tourist Recommendations\",\"authors\":\"Rinita Roy, Linus W. Dietz\",\"doi\":\"10.1145/3345002.3349289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to themselves and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution is a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended.\",\"PeriodicalId\":153835,\"journal\":{\"name\":\"Proceedings of the 23rd International Workshop on Personalization and Recommendation on the Web and Beyond\",\"volume\":\"28 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd International Workshop on Personalization and Recommendation on the Web and Beyond\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3345002.3349289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Workshop on Personalization and Recommendation on the Web and Beyond","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3345002.3349289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

移动主动旅游推荐系统可以根据与自身和环境相关的不同背景,通过推荐最佳选择来支持游客。在本文中,我们提出利用可穿戴传感器来收集游客的健康信息,并使用它们来推荐活动。我们讨论了一系列可穿戴设备、传感器来推断用户的生理状况,并举例说明了使用流行的自我量化移动应用程序的可行性。我们的主要贡献是一个数据模型,用于推导可穿戴传感器测量的参数(如心率、体温、血压)之间的关系,并使用它们来推断用户的生理状况。然后,这个模型可以用来导出旅游活动的类别,从而确定应该推荐哪些项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Physiological Conditions for Proactive Tourist Recommendations
Mobile proactive tourist recommender systems can support tourists by recommending the best choice depending on different contexts related to themselves and the environment. In this paper, we propose to utilize wearable sensors to gather health information about a tourist and use them for recommending activities. We discuss a range of wearable devices, sensors to infer physiological conditions of the users, and exemplify the feasibility using a popular self-quantification mobile app. Our main contribution is a data model to derive relations between the parameters measured by the wearable sensors, such as heart rate, body temperature, blood pressure, and use them to infer the physiological condition of a user. This model can then be used to derive classes of tourist activities that determine which items should be recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信