基于边缘增强全变分正则化的盲图像去模糊

Yu Shi, Hanyu Hong, Jie Song, Xia Hua
{"title":"基于边缘增强全变分正则化的盲图像去模糊","authors":"Yu Shi, Hanyu Hong, Jie Song, Xia Hua","doi":"10.1117/12.2180852","DOIUrl":null,"url":null,"abstract":"Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.","PeriodicalId":225534,"journal":{"name":"Photoelectronic Technology Committee Conferences","volume":"19 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Blind image deblurring with edge enhancing total variation regularization\",\"authors\":\"Yu Shi, Hanyu Hong, Jie Song, Xia Hua\",\"doi\":\"10.1117/12.2180852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.\",\"PeriodicalId\":225534,\"journal\":{\"name\":\"Photoelectronic Technology Committee Conferences\",\"volume\":\"19 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoelectronic Technology Committee Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2180852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoelectronic Technology Committee Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2180852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像去模糊是一个重要的问题。本文主要利用约束正则化方法来解决这一问题。考虑到边缘对视觉感知的重要性,引入边缘增强指标来约束总变分正则化,并采用双边滤波器进行边缘保持平滑。提出的边缘增强正则化方法的目的是在每个区域内进行较好的平滑,并保持边缘。在仿真和真实运动模糊图像上的实验表明,该方法与目前最先进的全变分方法相比具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind image deblurring with edge enhancing total variation regularization
Blind image deblurring is an important issue. In this paper, we focus on solving this issue by constrained regularization method. Motivated by the importance of edges to visual perception, the edge-enhancing indicator is introduced to constrain the total variation regularization, and the bilateral filter is used for edge-preserving smoothing. The proposed edge enhancing regularization method aims to smooth preferably within each region and preserve edges. Experiments on simulated and real motion blurred images show that the proposed method is competitive with recent state-of-the-art total variation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信